Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38626311

RESUMEN

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Asunto(s)
Células Endoteliales , Poliaminas , Animales , Humanos , Poliaminas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Proliferación Celular , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/enzimología , Hipertensión Arterial Pulmonar/patología , Apoptosis , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Endosomas/metabolismo , Transporte Biológico , Modelos Animales de Enfermedad , Células Cultivadas , Fenotipo , Ratones Endogámicos C57BL , Ratones
2.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119652, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38086447

RESUMEN

Pathogenic ATP10B variants have been described in patients with Parkinson's disease and dementia with Lewy body disease, and we previously established ATP10B as a late endo-/lysosomal lipid flippase transporting both phosphatidylcholine (PC) and glucosylceramide (GluCer) from the lysosomal exoplasmic to cytoplasmic membrane leaflet. Since several other lipid flippases regulate cellular lipid uptake, we here examined whether also ATP10B impacts cellular lipid uptake. Transient co-expression of ATP10B with its obligatory subunit CDC50A stimulated the uptake of fluorescently (NBD-) labeled PC in HeLa cells. This uptake is dependent on the transport function of ATP10B, is impaired by disease-associated variants and appears specific for NBD-PC. Uptake of non-ATP10B substrates, such as NBD-sphingomyelin or NBD-phosphatidylethanolamine is not increased. Remarkably, in stable cell lines co-expressing ATP10B/CDC50A we only observed increased NBD-PC uptake following treatment with rotenone, a mitochondrial complex I inhibitor that induces transport-dependent ATP10B phenotypes. Conversely, Im95m and WM-115 cells with endogenous ATP10B expression, present a decreased NBD-PC uptake following ATP10B knockdown, an effect that is exacerbated under rotenone stress. Our data show that the endo-/lysosomal lipid flippase ATP10B contributes to cellular PC uptake under specific cell stress conditions.


Asunto(s)
Rotenona , Humanos , Células HeLa , Rotenona/farmacología , Transporte Biológico , Membrana Celular/metabolismo
3.
Biomolecules ; 13(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371498

RESUMEN

Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.


Asunto(s)
Neoplasias de la Mama , Poliaminas , Femenino , Humanos , Adenosina Trifosfatasas/genética , Transporte Biológico , Neoplasias de la Mama/metabolismo , Células MCF-7 , Proteínas de Transporte de Membrana/metabolismo , Poliaminas/metabolismo , Regulación hacia Arriba
4.
Acta Neuropathol ; 146(2): 245-261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289222

RESUMEN

The link between the gut and the brain in Parkinson's disease (PD) pathogenesis is currently a subject of intense research. Indeed, gastrointestinal dysfunction is known as an early symptom in PD and inflammatory bowel disease (IBD) has recently been recognised as a risk factor for PD. The leucine-rich repeat kinase 2 (LRRK2) is a PD- and IBD-related protein with highest expression in immune cells. In this study, we provide evidence for a central role of LRRK2 in gut inflammation and PD. The presence of the gain-of-function G2019S mutation significantly increases the disease phenotype and inflammatory response in a mouse model of experimental colitis based on chronic dextran sulphate sodium (DSS) administration. Bone marrow transplantation of wild-type cells into G2019S knock-in mice fully rescued this exacerbated response, proving the key role of mutant LRRK2 in immune cells in this experimental colitis model. Furthermore, partial pharmacological inhibition of LRRK2 kinase activity also reduced the colitis phenotype and inflammation. Moreover, chronic experimental colitis also induced neuroinflammation and infiltration of peripheral immune cells into the brain of G2019S knock-in mice. Finally, combination of experimental colitis with overexpression of α-synuclein in the substantia nigra aggravated motor deficits and dopaminergic neurodegeneration in G2019S knock-in mice. Taken together, our results link LRRK2 with the immune response in colitis and provide evidence that gut inflammation can impact brain homeostasis and contribute to neurodegeneration in PD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Enfermedad de Parkinson , Animales , Ratones , Colitis/inducido químicamente , Colitis/genética , Inmunidad , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones Transgénicos , Mutación/genética , Enfermedad de Parkinson/patología
5.
Acta Neuropathol ; 145(5): 541-559, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991261

RESUMEN

Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Infecciones Urinarias , Ratones , Femenino , Animales , Sinucleinopatías/patología , Estudios de Casos y Controles , Escherichia coli , Ratones Transgénicos , alfa-Sinucleína , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/patología , Infecciones Urinarias/complicaciones , Inmunidad Innata
6.
Biomolecules ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830711

RESUMEN

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.


Asunto(s)
Poliaminas , Espermidina , Animales , Poliaminas/metabolismo , Espermidina/metabolismo , Compuestos de Boro , Espermina/metabolismo , Putrescina/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Colorantes Fluorescentes , Adenosina Trifosfatasas/metabolismo
7.
J Cell Biol ; 222(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36821088

RESUMEN

The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Fosfolípidos , Sinaptotagmina I , eIF-2 Quinasa , Humanos , Transporte Biológico , eIF-2 Quinasa/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Sinaptotagmina I/metabolismo , Membranas Mitocondriales/metabolismo
8.
Cells ; 11(11)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35681479

RESUMEN

One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.


Asunto(s)
Glaucoma , Colículos Superiores , Animales , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Ratones , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
9.
Small ; 18(18): e2200205, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35355419

RESUMEN

Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Colorantes , Células HEK293 , Humanos , Potenciales de la Membrana
10.
Exp Neurol ; 347: 113900, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695425

RESUMEN

During the pathogenesis of Parkinson's disease (PD), aggregation of alpha-synuclein (αSyn) induces a vicious cycle of cellular impairments that lead to neurodegeneration. Consequently, removing toxic αSyn aggregates constitutes a plausible strategy against PD. In this work, we tested whether stimulating the autolysosomal degradation of αSyn aggregates through the Ras-related in brain 7 (Rab7) pathway can reverse αSyn-induced cellular impairment and prevent neurodegeneration in vivo. The disease-related A53T mutant of αSyn was expressed in primary neurons and in dopaminergic neurons of the rat brain simultaneously with wild type (WT) Rab7 or the T22N mutant as negative control. The cellular integrity was quantified by morphological and biochemical analyses. In primary neurons, WT Rab7 rescued the αSyn-induced loss of neurons and neurites. Furthermore, Rab7 decreased the amount of reactive oxygen species and the amount of Triton X-100 insoluble αSyn. In rat brain, WT Rab7 reduced αSyn-induced loss of dopaminergic axon terminals in the striatum and the loss of dopaminergic dendrites in the substantia nigra pars reticulata. Further, WT Rab7 lowered αSyn pathology as quantified by phosphorylated αSyn staining. Finally, WT Rab7 attenuated αSyn-induced DNA damage in primary neurons and rat brain. In brief, Rab7 reduced αSyn-induced pathology, ameliorated αSyn-induced neuronal degeneration, oxidative stress and DNA damage. These findings indicate that Rab7 is able to disrupt the vicious cycle of cellular impairment, αSyn pathology and neurodegeneration present in PD. Stimulation of Rab7 and the autolysosomal degradation pathway could therefore constitute a beneficial strategy for PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/toxicidad , Proteínas de Unión a GTP rab7/biosíntesis , Proteínas de Unión a GTP rab7/farmacología , Animales , Células Cultivadas , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
11.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34620623

RESUMEN

Selective neuromodulation using designer receptors exclusively activated by designer drugs (DREADDs) has become an increasingly important research tool, as well as an emerging therapeutic approach. However, the safety profile of DREADD expression is unknown. Here, different titers of adeno-associated viral (AAV) vector were administered in an attempt to vary total expression levels of the inhibitory DREADD hM4D(Gi) in excitatory hippocampal neurons. Male Sprague Dawley rats were injected with AAV2/7 encoding DREADD-mCherry, DREADD, or mCherry. Pronounced neuronal loss and neuroinflammatory reactions were observed after transduction with the high titer DREADD AAV, which also resulted in the highest DREADD expression levels. No such effects were observed in the mCherry control group, despite an equally high titer, nor in conditions where lower viral vector titers were injected. In the high titer DREADD conditions, dentate gyrus (DG) evoked potentials were inhibited on clozapine-induced activation of hM4D(Gi), while in low titer conditions DG evoked potentials were enhanced. Recordings of single neuronal activity nevertheless indicated a reduction in spontaneous firing of granule cell layer neurons. Our results indicate that prolonged, high levels of DREADD expression can have neurotoxic effects and that chemogenetic suppression of excitatory hippocampal neurons can paradoxically enhance DG evoked potentials.


Asunto(s)
Clozapina , Hipocampo , Animales , Clozapina/toxicidad , Potenciales Evocados , Masculino , Neuronas , Ratas , Ratas Sprague-Dawley
12.
J Neurochem ; 158(5): 1186-1198, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34338310

RESUMEN

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


Asunto(s)
Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Corteza Olfatoria/citología , Corteza Olfatoria/fisiología , Factores de Edad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Odorantes , Bulbo Olfatorio/efectos de los fármacos , Corteza Olfatoria/efectos de los fármacos , Vías Olfatorias/citología , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/fisiología , Olfato/fisiología
13.
Neurobiol Dis ; 157: 105426, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34144124

RESUMEN

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
EMBO J ; 40(10): e106214, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33932034

RESUMEN

BNIP3 is a mitophagy receptor with context-dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient's survival and depletion of BNIP3 in B16-F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2-mediated downregulation of HIF-1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3-deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4-mediated ferritinophagy, which fostered PHD2-mediated HIF-1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF-1α levels in BNIP3-depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF-1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro-tumorigenic HIF-1α glycolytic program in melanoma cells.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Línea Celular Tumoral , Biología Computacional , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Immunoblotting , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Hum Gene Ther ; 32(11-12): 616-627, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34006117

RESUMEN

Several neurodegenerative disorders are characterized by oligodendroglial pathology and myelin loss. Oligodendrogliopathies are a group of rare diseases for which there currently is no therapy. Gene delivery through viral vectors to oligodendrocytes is a potential strategy to deliver therapeutic molecules to oligodendrocytes for disease modification. However, targeting oligodendroglial cells in vivo is challenging due to their widespread distribution in white and gray matter. In this study, we aimed to address several of these difficulties by designing and testing different oligodendroglial targeting vectors in rat and mouse brain, utilizing different promoters, serotypes, and delivery routes. We found that different oligodendroglial promoters (myelin basic protein [MBP], cytomegalovirus-enhanced MBP, and myelin-associated glycoprotein [MAG]) vary considerably in their ability to drive oligodendroglial transgene expression and different viral vector serotypes (rAAV2/7, rAAV2/8, and rAAV2/9) exhibit varying efficacies in transducing oligodendrocytes. Different administration routes through intracerebral or intraventricular injection allow widespread targeting of mature oligodendrocytes. Delivery of rAAV2/9-MAG-GFP into the cerebrospinal fluid results in GFP expression along the entire rostrocaudal axis of the spinal cord. Collectively, these results show that oligodendrocytes can be targeted with high specificity and widespread expression, which will be useful for gene therapeutic interventions or disease modeling purposes.


Asunto(s)
Oligodendroglía , Roedores , Animales , Encéfalo , Vectores Genéticos/genética , Ratones , Ratas , Transgenes
16.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799982

RESUMEN

ATP13A2, a late endo-/lysosomal polyamine transporter, is implicated in a variety of neurodegenerative diseases, including Parkinson's disease and Kufor-Rakeb syndrome, an early-onset atypical form of parkinsonism. Loss-of-function mutations in ATP13A2 result in lysosomal deficiency as a consequence of impaired lysosomal export of the polyamines spermine/spermidine. Furthermore, accumulating evidence suggests the involvement of ATP13A2 in regulating the fate of α-synuclein, such as cytoplasmic accumulation and external release. However, no consensus has yet been reached on the mechanisms underlying these effects. Here, we aimed to gain more insight into how ATP13A2 is linked to α-synuclein biology in cell models with modified ATP13A2 activity. We found that loss of ATP13A2 impairs lysosomal membrane integrity and induces α-synuclein multimerization at the membrane, which is enhanced in conditions of oxidative stress or exposure to spermine. In contrast, overexpression of ATP13A2 wildtype (WT) had a protective effect on α-synuclein multimerization, which corresponded with reduced αsyn membrane association and stimulation of the ubiquitin-proteasome system. We also found that ATP13A2 promoted the secretion of α-synuclein through nanovesicles. Interestingly, the catalytically inactive ATP13A2 D508N mutant also affected polyubiquitination and externalization of α-synuclein multimers, suggesting a regulatory function independent of the ATPase and transport activity. In conclusion, our study demonstrates the impact of ATP13A2 on α-synuclein multimerization via polyamine transport dependent and independent functions.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Exocitosis , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Mutación , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína , ATPasas de Translocación de Protón/genética , Espermina/metabolismo , Ubiquitina/metabolismo
17.
Epilepsia ; 62(3): 659-670, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33570167

RESUMEN

OBJECTIVE: One third of epilepsy patients do not become seizure-free using conventional medication. Therefore, there is a need for alternative treatments. Preclinical research using designer receptors exclusively activated by designer drugs (DREADDs) has demonstrated initial success in suppressing epileptic activity. Here, we evaluated whether long-term chemogenetic seizure suppression could be obtained in the intraperitoneal kainic acid rat model of temporal lobe epilepsy, when DREADDs were selectively expressed in excitatory hippocampal neurons. METHODS: Epileptic male Sprague Dawley rats received unilateral hippocampal injections of adeno-associated viral vector encoding the inhibitory DREADD hM4D(Gi), preceded by a cell-specific promotor targeting excitatory neurons. The effect of clozapine-mediated DREADD activation on dentate gyrus evoked potentials and spontaneous electrographic seizures was evaluated. Animals were systemically treated with single (.1 mg/kg/24 h) or repeated (.1 mg/kg/6 h) injections of clozapine. In addition, long-term continuous release of clozapine and olanzapine (2.8 mg/kg/7 days) using implantable minipumps was evaluated. All treatments were administered during the chronic epileptic phase and between 1.5 and 13.5 months after viral transduction. RESULTS: In the DREADD group, dentate gyrus evoked potentials were inhibited after clozapine treatment. Only in DREADD-expressing animals, clozapine reduced seizure frequency during the first 6 h postinjection. When administered repeatedly, seizures were suppressed during the entire day. Long-term treatment with clozapine and olanzapine both resulted in significant seizure-suppressing effects for multiple days. Histological analysis revealed DREADD expression in both hippocampi and some cortical regions. However, lesions were also detected at the site of vector injection. SIGNIFICANCE: This study shows that inhibition of the hippocampus using chemogenetics results in potent seizure-suppressing effects in the intraperitoneal kainic acid rat model, even 1 year after viral transduction. Despite a need for further optimization, chemogenetic neuromodulation represents a promising treatment prospect for temporal lobe epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Clozapina/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Olanzapina/uso terapéutico , Receptores de Neurotransmisores/genética , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados/fisiología , Quinasas de Receptores Acoplados a Proteína-G/efectos de los fármacos , Quinasas de Receptores Acoplados a Proteína-G/genética , Edición Génica/métodos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/efectos de los fármacos , Convulsiones/prevención & control
18.
Neurotherapeutics ; 18(2): 949-961, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33594532

RESUMEN

The development of disease-modifying therapies for Parkinson's disease is a major challenge which would be facilitated by a better understanding of the pathogenesis. Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are key players in Parkinson's disease, but their relationship remains incompletely resolved. Previous studies investigating the effect of LRRK2 on α-synuclein-induced neurotoxicity and neuroinflammation in preclinical Parkinson's disease models have reported conflicting results. Here, we aimed to further explore the functional interaction between α-synuclein and LRRK2 and to evaluate the therapeutic potential of targeting physiological LRRK2 levels. We studied the effects of total LRRK2 protein loss as well as pharmacological LRRK2 kinase inhibition in viral vector-mediated α-synuclein-based Parkinson's disease models developing early- and late-stage neurodegeneration. Surprisingly, total LRRK2 ablation or in-diet treatment with the LRRK2 kinase inhibitor MLi-2 did not significantly modify α-synuclein-induced motor deficits, dopaminergic cell loss, or α-synuclein pathology. Interestingly, we found a significant effect on α-synuclein-induced neuroinflammatory changes in the absence of LRRK2, with a reduced microglial activation and CD4+ and CD8+ T cell infiltration. This observed lack of protection against α-synuclein-induced toxicity should be well considered in light of the ongoing therapeutic development of LRRK2 kinase inhibitors for idiopathic Parkinson's disease. Future studies will be crucial to understand the link between these neuroinflammatory processes and disease progression as well as the role of α-synuclein and LRRK2 in these pathological events.


Asunto(s)
Indazoles/administración & dosificación , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neuroinflamatorias/enzimología , Pirimidinas/administración & dosificación , alfa-Sinucleína/toxicidad , Animales , Masculino , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/patología , Ratas , Ratas Long-Evans , Ratas Transgénicas
19.
J Biol Chem ; 296: 100182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310703

RESUMEN

Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Adenosina Trifosfatasas/genética , Animales , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Mitoguazona/farmacología , Mutación , Secuenciación Completa del Genoma/métodos
20.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255702

RESUMEN

(1) Background: Neurogenesis is considered to be a potential brain repair mechanism and is enhanced in stroke. It is difficult to reconstruct the neurogenesis process only from the histological sections taken from different animals at different stages of brain damage and restoration. Study of neurogenesis would greatly benefit from development of tissue-specific visualization probes. (2) Purpose: The study aimed to explore if overexpression of ferritin, a nontoxic iron-binding protein, under a doublecortin promoter can be used for non-invasive visualization of neurogenesis using magnetic resonance imaging (MRI). (3) Methods: Ferritin heavy chain (FerrH) was expressed in the adeno-associated viral backbone (AAV) under the doublecortin promoter (pDCX), specific for young neurons, in the viral construct AAV-pDCX-FerrH. Expression of the enhanced green fluorescent protein (eGFP) was used as an expression control (AAV-pDCX-eGFP). The viral vectors or phosphate-buffered saline (PBS) were injected intracerebrally into 18 adult male Sprague-Dawley rats. Three days before injection, rats underwent transient middle-cerebral-artery occlusion or sham operation. Animals were subjected to In vivo MRI study before surgery and on days 7, 14, 21, and 28 days after injection using a Bruker BioSpec 11.7 T scanner. Brain sections obtained on day 28 after injection were immunostained for ferritin, young (DCX) and mature (NeuN) neurons, and activated microglia/macrophages (CD68). Additionally, RT-PCR was performed to confirm ferritin expression. (4) Results: T2* images in post-ischemic brains of animals injected with AAV-pDCX-FerrH showed two distinct zones of MRI signal hypointensity in the ipsilesioned hemisphere starting from 14 days after viral injection-in the ischemic lesion and near the lateral ventricle and subventricular zone (SVZ). In sham-operated animals, only one zone of hypointensity near the lateral ventricle and SVZ was revealed. Immunochemistry showed that ferritin-expressing cells in ischemic lesions were macrophages (88.1%), while ferritin-expressing cells near the lateral ventricle in animals both after ischemia and sham operation were mostly mature (55.7% and 61.8%, respectively) and young (30.6% and 7.1%, respectively) neurons. RT-PCR confirmed upregulated expression of ferritin in the caudoputamen and corpus callosum. Surprisingly, in animals injected with AAV-pDCX-eGFP we similarly observed two zones of hypointensity on T2* images. Cellular studies also showed the presence of mature (81.5%) and young neurons (6.1%) near the lateral ventricle in both postischemic and sham-operated animals, while macrophages in ischemic lesions were ferritin-positive (98.2%). (5) Conclusion: Ferritin overexpression induced by injection of AAV-pDCX-FerrH was detected by MRI using T2*-weighted images, which was confirmed by immunochemistry showing ferritin in young and mature neurons. Expression of eGFP also caused a comparable reduced MR signal intensity in T2*-weighted images. Additional studies are needed to investigate the potential and tissue-specific features of the use of eGFP and ferritin expression in MRI studies.


Asunto(s)
Ferritinas/genética , Neurogénesis/genética , Neuronas/metabolismo , Accidente Cerebrovascular/genética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Proteína Doblecortina , Vectores Genéticos/farmacología , Humanos , Infarto de la Arteria Cerebral Media , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Imagen por Resonancia Magnética , Masculino , Microglía/metabolismo , Microglía/patología , Proteínas Asociadas a Microtúbulos/genética , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...