Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(21): 14672-14679, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38708121

RESUMEN

ZnO nanomaterials have been extensively used as photocatalysts for the removal of pollutants in aqueous environments. This study explores the enhanced photocatalytic performance of porous ZnO coral-like nanoplates synthesized via a one-pot wet-chemical method and subsequent annealing treatment. Characterization through scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, photoluminescence (PL) spectroscopy, and Brunauer-Emmett-Teller (BET) measurements confirmed the nanoplates' porous structure, single-crystal structure, 100 nm thickness, and 80 nm pore size. These unique structural characteristics of the ZnO coral-like nanoplates enabled effective photodegradation of the organic dye rhodamine B (RhB) under visible light irradiation. Under simulated sunlight, the ZnO photocatalyst exhibited exceptional performance, achieving a 97.3% removal rate of RhB after 210 minutes of irradiation. The prepared ZnO photocatalyst also showed remarkable photostability and regeneration capability for RhB photodegradation with a decreased efficiency of less than 15% after eight testing cycles. The potential mechanism of the ZnO photocatalyst toward RhB degradation was also studied and is discussed in detail.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616056

RESUMEN

Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device's performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...