Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(7): 448, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468471

RESUMEN

Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.


Asunto(s)
Caenorhabditis elegans , Agregado de Proteínas , Animales , Ratas , Caenorhabditis elegans/metabolismo , Etidio/metabolismo , Azida Sódica , Gránulos de Estrés , Hipoxia/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
PLoS Genet ; 18(5): e1009672, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622856

RESUMEN

In C. elegans, germline ablation leads to long life span and stress resistance. It has been reported that mutations that block oogenesis or an upstream step in germline development confer strong resistance to hypoxia. We demonstrate here that the hypoxia resistance of sterile mutants is dependent on developmental stage and age. In just a 12-hour period, sterile animals transform from hypoxia sensitive L4 larvae into hypoxia resistant adults. Since this transformation occurs in animals with no germline, the physiological programs that determine hypoxia sensitivity in germline mutants occur independently of germline signals and instead rely on signals from somatic tissues. Furthermore, we found two distinct mechanisms of hypoxia resistance in germline deficient animals. First, a DAF-16/FoxO independent mechanism that occurs in all hypoxia resistant sterile adults and, second, a DAF-16/FoxO dependent mechanism that confers an added layer of resistance, or "super-resistance", to animals with no germline as they age past day 1 of adulthood. RNAseq data showed that genes involved in both cytosolic and mitochondrial protein translation are repressed in sterile adults and further repressed only in germline deficient mutants as they age. Importantly, mutation of daf-16 specifically blocked the repression of cytosolic ribosomal protein genes, but not mitochondrial ribosomal protein genes, implicating DAF-16/FoxO mediated repression of cytosolic ribosomal protein genes as a mechanism of hypoxia super-resistance. Consistent with this hypothesis, the hypoxia super-resistance of aging germline deficient adults was also suppressed by dual mutation of ncl-1 and larp-1, two regulators of protein translation and ribosomal protein abundance. These studies provide novel insight into a profound physiological transformation that takes place in germline mutants during development, showing that some of the unique physiological properties of these long-lived animals are derived from developmentally dependent DAF-16/FoxO mediated repression of genes involved in cytosolic protein translation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Germinativas/metabolismo , Hipoxia/genética , Longevidad/genética , Mutación , Proteínas Ribosómicas/genética
4.
Cell Death Dis ; 12(7): 711, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267182

RESUMEN

Mitochondria are the main oxygen consumers in cells and as such are the primary organelle affected by hypoxia. All hypoxia pathology presumably derives from the initial mitochondrial dysfunction. An early event in hypoxic pathology in C. elegans is disruption of mitochondrial proteostasis with induction of the mitochondrial unfolded protein response (UPRmt) and mitochondrial protein aggregation. Here in C. elegans, we screen through RNAis and mutants that confer either strong resistance to hypoxic cell death or strong induction of the UPRmt to determine the relationship between hypoxic cell death, UPRmt activation, and hypoxia-induced mitochondrial protein aggregation (HIMPA). We find that resistance to hypoxic cell death invariantly mitigated HIMPA. We also find that UPRmt activation invariantly mitigated HIMPA. However, UPRmt activation was neither necessary nor sufficient for resistance to hypoxic death and vice versa. We conclude that UPRmt is not necessarily hypoxia protective against cell death but does protect from mitochondrial protein aggregation, one of the early hypoxic pathologies in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Respuesta de Proteína Desplegada , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Hipoxia de la Célula , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Agregado de Proteínas , Agregación Patológica de Proteínas
5.
Curr Biol ; 31(1): 128-137.e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33157031

RESUMEN

The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.


Asunto(s)
Hipoxia de la Célula/genética , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN de Transferencia/biosíntesis , Ribosomas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentación Fisiológica , Homeostasis/genética , Mutación , ARN Helicasas/genética , ARN Helicasas/metabolismo
6.
Science ; 367(6480): 851-852, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32079759
7.
Elife ; 72018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070633

RESUMEN

The mechanisms underlying biological aging are becoming recognized as therapeutic targets to delay the onset of multiple age-related morbidities. Even greater health benefits can potentially be achieved by halting or reversing age-associated changes. C. elegans restore their tissues and normal longevity upon exit from prolonged adult reproductive diapause, but the mechanisms underlying this phenomenon remain unknown. Here, we focused on the mechanisms controlling recovery from adult diapause. Here, we show that functional improvement of post-mitotic somatic tissues does not require germline signaling, germline stem cells, or replication of nuclear or mitochondrial DNA. Instead a large expansion of the somatic RNA pool is necessary for restoration of youthful function and longevity. Treating animals with the drug 5-fluoro-2'-deoxyuridine prevents this restoration by blocking reactivation of RNA metabolism. These observations define a critical early step during exit from adult reproductive diapause that is required for somatic rejuvenation of an adult metazoan animal.


Asunto(s)
Diapausa/genética , Longevidad/genética , ARN/genética , Reproducción/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Desoxiuridina/administración & dosificación , Desoxiuridina/análogos & derivados , Células Germinativas/efectos de los fármacos , Células Germinativas/crecimiento & desarrollo , Longevidad/efectos de los fármacos , ARN/efectos de los fármacos , Reproducción/efectos de los fármacos , Células Madre/efectos de los fármacos
8.
Cell Death Differ ; 24(10): 1730-1738, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28644434

RESUMEN

Aggregation of cytosolic proteins is a pathological finding in disease states, including ageing and neurodegenerative diseases. We have previously reported that hypoxia induces protein misfolding in Caenorhabditis elegans mitochondria, and electron micrographs suggested protein aggregates. Here, we seek to determine whether mitochondrial proteins actually aggregate after hypoxia and other cellular stresses. To enrich for mitochondrial proteins that might aggregate, we performed a proteomics analysis on purified C. elegans mitochondria to identify relatively insoluble proteins under normal conditions (110 proteins identified) or after sublethal hypoxia (65 proteins). A GFP-tagged mitochondrial protein (UCR-11 - a complex III electron transport chain protein) in the normally insoluble set was found to form widespread aggregates in mitochondria after hypoxia. Five other GFP-tagged mitochondrial proteins in the normally insoluble set similarly form hypoxia-induced aggregates. Two GFP-tagged mitochondrial proteins from the soluble set as well as a mitochondrial-targeted GFP did not form aggregates. Ageing also resulted in aggregates. The number of hypoxia-induced aggregates was regulated by the mitochondrial unfolded protein response (UPRmt) master transcriptional regulator ATFS-1, which has been shown to be hypoxia protective. An atfs-1(loss-of-function) mutant and RNAi construct reduced the number of aggregates while an atfs-1(gain-of-function) mutant increased aggregates. Our work demonstrates that mitochondrial protein aggregation occurs with hypoxic injury and ageing in C. elegans. The UPRmt regulates aggregation and may protect from hypoxia by promoting aggregation of misfolded proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Envejecimiento , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología
9.
PLoS One ; 9(3): e92552, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651852

RESUMEN

Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Coenzima A Ligasas/deficiencia , Proteínas de Unión al ADN/deficiencia , Estrés Fisiológico , Factores de Transcripción/deficiencia , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/genética , Caenorhabditis elegans/inmunología , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Longevidad/genética , Mutación , Fenotipo , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
10.
PLoS One ; 7(10): e45049, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071506

RESUMEN

Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.


Asunto(s)
Homeostasis/fisiología , Fluidez de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/fisiología , Ácidos Grasos Monoinsaturados/metabolismo , Ácido Oléico/fisiología , Proteína Quinasa C/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
11.
PLoS Genet ; 8(4): e1002645, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511885

RESUMEN

Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66- and NHR-80-mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Metabolismo de los Lípidos , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácido Graso Desaturasas/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Humanos , Mitocondrias/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/genética , Eliminación de Secuencia , Transducción de Señal , Esfingolípidos/metabolismo
12.
PLoS Genet ; 6(11): e1001206, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085633

RESUMEN

Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/metabolismo , Alimentos , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos , Mutación/genética , Sirtuinas/metabolismo , Aminoácidos/deficiencia , Animales , Bioensayo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Metabolismo Energético/genética , Cuerpo Adiposo/citología , Conducta Alimentaria , Regulación de la Expresión Génica , Genes de Insecto/genética , Pruebas Genéticas , Histona Desacetilasas/genética , Larva/genética , Especificidad de Órganos/genética , Sirtuinas/genética
13.
Cell Metab ; 12(4): 398-410, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20889131

RESUMEN

Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A Ligasas/fisiología , Proteínas de Unión al ADN/fisiología , Grasas/metabolismo , Factores de Transcripción/fisiología , Animales , Coenzima A Ligasas/genética , Mucosa Intestinal/metabolismo , Lípidos/biosíntesis , Mutagénesis Sitio-Dirigida , Receptores Citoplasmáticos y Nucleares
14.
Mol Syst Biol ; 6: 367, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20461074

RESUMEN

Gene regulatory networks (GRNs) provide insights into the mechanisms of differential gene expression at a systems level. GRNs that relate to metazoan development have been studied extensively. However, little is still known about the design principles, organization and functionality of GRNs that control physiological processes such as metabolism, homeostasis and responses to environmental cues. In this study, we report the first experimentally mapped metazoan GRN of Caenorhabditis elegans metabolic genes. This network is enriched for nuclear hormone receptors (NHRs). The NHR family has greatly expanded in nematodes: humans have 48 NHRs, but C. elegans has 284, most of which are uncharacterized. We find that the C. elegans metabolic GRN is highly modular and that two GRN modules predominantly consist of NHRs. Network modularity has been proposed to facilitate a rapid response to different cues. As NHRs are metabolic sensors that are poised to respond to ligands, this suggests that C. elegans GRNs evolved to enable rapid and adaptive responses to different cues by a concurrence of NHR family expansion and modular GRN wiring.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Redes Reguladoras de Genes/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Regulación de la Expresión Génica , Modelos Genéticos , Regiones Promotoras Genéticas , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Levaduras
15.
PLoS Genet ; 5(7): e1000553, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19668342

RESUMEN

Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Familia de Multigenes , Receptores Citoplasmáticos y Nucleares/genética , ATPasas de Translocación de Protón Vacuolares/genética
16.
Science ; 326(5955): 954-8, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19713489

RESUMEN

The study of starvation-resistant biological programs has elucidated numerous mechanisms influencing aging. Here we present the discovery and characterization of starvation-induced adult reproductive diapause (ARD) in Caenorhabditis elegans. ARD differs from the C. elegans dauer diapause in that it enables sexually mature adults to delay reproductive onset 15-fold and extend total adult life span at least threefold. The effectiveness of ARD requires apoptotic death of the entire germ line, except for a small population of protected germline stem cells (GSCs). When feeding is resumed, surviving GSCs regenerate a new germ line capable of offspring production near the level of nonstarved animals. The starvation-sensing nuclear receptor NHR-49 is required for ARD entry and recovery. Our findings establish mechanisms for preserving stem cell potency and reproductive potential during prolonged starvation.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Células Germinativas/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Células Madre/fisiología , Envejecimiento , Animales , Apoptosis , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspasas/genética , Caspasas/fisiología , Desarrollo Embrionario , Células Germinativas/citología , Larva/crecimiento & desarrollo , Larva/fisiología , Longevidad , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Reproducción , Transducción de Señal , Inanición , Estrés Fisiológico
17.
Cell Metab ; 8(3): 266-74, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18762027

RESUMEN

Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a (13)C isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C. elegans, establishing the means by which worms obtain and process fatty acids. We applied this method to characterize how insulin signaling affects lipid physiology. Several long-lived mutations in the insulin receptor gene daf-2 resulted in significantly higher levels of synthesized fats in triglycerides and phospholipids. This elevation of fat synthesis was completely dependent upon daf-16/FoxO. Other long-lived alleles of daf-2 did not increase fat synthesis, however, suggesting that site-specific mutations in the insulin receptor can differentially influence longevity and metabolism, and that elevated lipid synthesis is not required for the longevity of daf-2 mutants.


Asunto(s)
Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Lipogénesis/fisiología , Transducción de Señal/fisiología , Alelos , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Isótopos de Carbono , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Factores de Transcripción Forkhead , Marcaje Isotópico , Lípidos/fisiología , Lípidos de la Membrana/biosíntesis , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Factores de Transcripción/metabolismo
18.
Cell Metab ; 8(2): 118-31, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18680713

RESUMEN

A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.


Asunto(s)
Regulación del Apetito/fisiología , Caenorhabditis elegans/metabolismo , Conducta Alimentaria/fisiología , Metabolismo de los Lípidos/fisiología , Sistema Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Adaptación Fisiológica/fisiología , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/fisiología , Ambiente , Modelos Animales , Mutación/genética , Sistema Nervioso/citología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas Aferentes/citología , Receptores de Glutamato Metabotrópico/metabolismo , Inanición/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
19.
PLoS Genet ; 4(2): e1000021, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454197

RESUMEN

In eukaryotes, RNA polymerase II (Pol(II)) dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to Pol(II)-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Transactivadores/metabolismo , Adaptación Fisiológica , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Alimentos , Perfilación de la Expresión Génica , Genes de Helminto , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Inactivación Metabólica , Metabolismo de los Lípidos , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Modelos Biológicos , Mutación , Subunidades de Proteína , Interferencia de ARN , Transactivadores/antagonistas & inhibidores , Transactivadores/química , Transactivadores/genética , Xenobióticos/metabolismo , Xenobióticos/toxicidad
20.
Genes Dev ; 20(9): 1137-49, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16651656

RESUMEN

The Caenorhabditis elegans Nuclear Hormone Receptor NHR-49 coordinates expression of fatty acid (FA) metabolic genes during periods of feeding and in response to fasting. Here we report the identification of MDT-15, a subunit of the C. elegans Mediator complex, as an NHR-49-interacting protein and transcriptional coactivator. Knockdown of mdt-15 by RNA interference (RNAi) prevented fasting-induced mRNA accumulation of NHR-49 targets in vivo, and fasting-independent expression of other NHR-49 target genes, including two FA-Delta9-desaturases (fat-5, fat-7). Interestingly, mdt-15 RNAi affected additional FA-metabolism genes (including the third FA-Delta9-desaturase, fat-6) that are regulated independently of NHR-49, suggesting that distinct unidentified regulatory factors also recruit MDT-15 to selectively modulate metabolic gene expression. The deregulation of FA-Delta9-desaturases by knockdown of mdt-15 correlated with dramatically decreased levels of unsaturated FAs and multiple deleterious phenotypes (short life span, sterility, uncoordinated locomotion, and morphological defects). Importantly, dietary addition of specific polyunsaturated FAs partially suppressed these pleiotropic phenotypes. Thus, failure to properly govern FA-Delta9-desaturation contributed to decreased nematode viability. Our findings imply that a single subunit of the Mediator complex, MDT-15, integrates the activities of several distinct regulatory factors to coordinate metabolic and hormonal regulation of FA metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Ácidos Grasos/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Metabolismo Energético , Ayuno , Ácido Graso Desaturasas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA