Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896600

RESUMEN

High dynamic range (HDR) imaging technology is increasingly being used in automated driving systems (ADS) for improving the safety of traffic participants in scenes with strong differences in illumination. Therefore, a combination of HDR video, that is video with details in all illumination regimes, and (HDR) object perception techniques that can deal with this variety in illumination is highly desirable. Although progress has been made in both HDR imaging solutions and object detection algorithms in the recent years, they have progressed independently of each other. This has led to a situation in which object detection algorithms are typically designed and constantly improved to operate on 8 bit per channel content. This makes these algorithms not ideally suited for use in HDR data processing, which natively encodes to a higher bit-depth (12 bits/16 bits per channel). In this paper, we present and evaluate two novel convolutional neural network (CNN) architectures that intelligently convert high bit depth HDR images into 8-bit images. We attempt to optimize reconstruction quality by focusing on ADS object detection quality. The first research novelty is to jointly perform tone-mapping with demosaicing by additionally successfully suppressing noise and demosaicing artifacts. The first CNN performs tone-mapping with noise suppression on a full-color HDR input, while the second performs joint demosaicing and tone-mapping with noise suppression on a raw HDR input. The focus is to increase the detectability of traffic-related objects in the reconstructed 8-bit content, while ensuring that the realism of the standard dynamic range (SDR) content in diverse conditions is preserved. The second research novelty is that for the first time, to the best of our knowledge, a thorough comparative analysis against the state-of-the-art tone-mapping and demosaicing methods is performed with respect to ADS object detection accuracy on traffic-related content that abounds with diverse challenging (i.e., boundary cases) scenes. The evaluation results show that the two proposed networks have better performance in object detection accuracy and image quality, than both SDR content and content obtained with the state-of-the-art tone-mapping and demosaicing algorithms.

2.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420931

RESUMEN

Intelligent driver assistance systems are becoming increasingly popular in modern passenger vehicles. A crucial component of intelligent vehicles is the ability to detect vulnerable road users (VRUs) for an early and safe response. However, standard imaging sensors perform poorly in conditions of strong illumination contrast, such as approaching a tunnel or at night, due to their dynamic range limitations. In this paper, we focus on the use of high-dynamic-range (HDR) imaging sensors in vehicle perception systems and the subsequent need for tone mapping of the acquired data into a standard 8-bit representation. To our knowledge, no previous studies have evaluated the impact of tone mapping on object detection performance. We investigate the potential for optimizing HDR tone mapping to achieve a natural image appearance while facilitating object detection of state-of-the-art detectors designed for standard dynamic range (SDR) images. Our proposed approach relies on a lightweight convolutional neural network (CNN) that tone maps HDR video frames into a standard 8-bit representation. We introduce a novel training approach called detection-informed tone mapping (DI-TM) and evaluate its performance with respect to its effectiveness and robustness in various scene conditions, as well as its performance relative to an existing state-of-the-art tone mapping method. The results show that the proposed DI-TM method achieves the best results in terms of detection performance metrics in challenging dynamic range conditions, while both methods perform well in typical, non-challenging conditions. In challenging conditions, our method improves the detection F2 score by 13%. Compared to SDR images, the increase in F2 score is 49%.

3.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36433238

RESUMEN

Pedestrian detection is an important research domain due to its relevance for autonomous and assisted driving, as well as its applications in security and industrial automation. Often, more than one type of sensor is used to cover a broader range of operating conditions than a single-sensor system would allow. However, it remains difficult to make pedestrian detection systems perform well in highly dynamic environments, often requiring extensive retraining of the algorithms for specific conditions to reach satisfactory accuracy, which, in turn, requires large, annotated datasets captured in these conditions. In this paper, we propose a probabilistic decision-level sensor fusion method based on naive Bayes to improve the efficiency of the system by combining the output of available pedestrian detectors for colour and thermal images without retraining. The results in this paper, obtained through long-term experiments, demonstrate the efficacy of our technique, its ability to work with non-registered images, and its adaptability to cope with situations when one of the sensors fails. The results also show that our proposed technique improves the overall accuracy of the system and could be very useful in several applications.


Asunto(s)
Conducción de Automóvil , Peatones , Humanos , Teorema de Bayes , Color , Algoritmos
4.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858942

RESUMEN

This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes.

5.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200483

RESUMEN

In this paper, we describe a robust method for compensating the panning and tilting motion of a camera, applied to foreground-background segmentation. First, the necessary internal camera parameters are determined through feature-point extraction and tracking. From these parameters, two motion models for points in the image plane are established. The first model assumes a fixed tilt angle, whereas the second model allows simultaneous pan and tilt. At runtime, these models are used to compensate for the motion of the camera in the background model. We will show that these methods provide a robust compensation mechanism and improve the foreground masks of an otherwise state-of-the-art unsupervised foreground-background segmentation method. The resulting algorithm is always able to obtain F 1 scores above 80 % on every daytime video in our test set when a minimal number of only eight feature matches are used to determine the background compensation, whereas the standard approaches need significantly more feature matches to produce similar results.

6.
PLoS One ; 9(7): e102792, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068380

RESUMEN

Although it is generally accepted that visual information guides steering, it is still unclear whether a curvature matching strategy or a 'look where you are going' strategy is used while steering through a curved road. The current experiment investigated to what extent the existing models for curve driving also apply to cycling around a curve, and tested the influence of cycling speed on steering and gaze behavior. Twenty-five participants were asked to cycle through a semicircular lane three consecutive times at three different speeds while staying in the center of the lane. The observed steering behavior suggests that an anticipatory steering strategy was used at curve entrance and a compensatory strategy was used to steer through the actual bend of the curve. A shift of gaze from the center to the inside edge of the lane indicates that at low cycling speed, the 'look where you are going' strategy was preferred, while at higher cycling speeds participants seemed to prefer the curvature matching strategy. Authors suggest that visual information from both steering strategies contributes to the steering system and can be used in a flexible way. Based on a familiarization effect, it can be assumed that steering is not only guided by vision but that a short-term learning component should also be taken into account.


Asunto(s)
Ciclismo , Visión Ocular , Adulto , Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA