Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Environ Manage ; 358: 120902, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657411

RESUMEN

Poorly managed faecal sludge (FS) poses significant challenges to public health and the environment. Anaerobic digestion (AD) of FS provides an effective method for energy recovery while reducing FS associated threats. Recognizing the critical role of the dewatering process before AD, this study investigates the synergistic application of chemical coagulation and mesophilic AD for synthetic FS treatment. FeCl3, AlCl3, Fe2(SO4)3, poly ferric sulfate (PFS) and poly aluminium ferric chloride (PAFC) were utilized at varying dosages to examine their impact on FS properties and subsequent biogas production from the dewatered FS. It was found that coagulation enhances sedimentation efficiencies and dewaterability through mechanisms such as charge neutralization, charge patching and bridging, thereby improving the FS feasibility for AD. Notably, polymer coagulant PFS showed good performance in balancing pollutant removal and methane recovery, contributing to facilitating the hydrolysis and acidogenesis microorganisms involved in the AD process. Optimal dosage was identified at 150 mg/g TS (1.7 g/L FS), achieving prominent removal efficiencies for total COD (67%), turbidity (85%), and total phosphorus (60%), while simultaneously enhancing AD performance with specific CH4 production reaching 517 ml CH4/g VS or 24.8 ml CH4/g AD wet feedstock compared to 309 ml CH4/g VS or 2.7 ml CH4/g AD wet feedstock in untreated FS.


Asunto(s)
Heces , Aguas del Alcantarillado , Anaerobiosis , Heces/microbiología , Compuestos Férricos/química , Eliminación de Residuos Líquidos/métodos , Metano , Fósforo/química
2.
J Environ Health Sci Eng ; 21(2): 497-512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37869604

RESUMEN

Nowadays, public concern is focused on the degradation of water quality. For this reason, the development of innovative technologies for water treatment in view of (micro)pollutant removal is important. Indeed, organic (micro)pollutants, such as pharmaceuticals, herbicides, pesticides and plasticizers at concentration levels of µg L-1 or even ng L-1 are hardly removed during conventional wastewater treatment. In view of this, thermo-plasma expanded graphite, a light-weight innovative material in the form of a powder, was encapsulated into calcium alginate to obtain a granular form useful as filtration and adsorption material for removal of different pollutants. The produced material was used to remove atrazine, bisphenol-A, 17-α-ethinylestradiol and carbamazepine (at concentration levels of 125, 250 and 500 µg L-1) by top-down filtration. The effect of flow rate, bed depth and adsorbent composition was evaluated based on breakthrough curves. The experimental data was analysed with the Adams-Bohart model in view of scale-up. Under optimal conditions, removal and adsorption capacity of respectively about 21%, 21%, 38%,42%, 43 µg g-1, 44 µg g-1, 37 µg g-1 and 87 µg g-1 were obtained for atrazine, bisphenol, 17-α ethinylestradiol and carbamazepine when using 0.12 g of thermo-plasma expanded graphite to treat 200 mL at 500 µg L-1 (for each compound) of solution obtaining at contact time of 20 min. The granular form of TPEG obtained (GTPEG) by entrapping in calcium alginate results to have a good adsorbent property for the removal of carbamazepine, atrazine, bisphenol A and 17-α ethinylestradiol from water at concentration levels between 250 and 500 µg L-1. Promising results confirm the adsorbent properties of TPEG and push-up us to investigate on its application and improve of its performance by evaluating different entrapping materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00876-9.

3.
Sci Total Environ ; 856(Pt 1): 158764, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116639

RESUMEN

The ozone-activated peroxymonosulfate process (O3/PMS) has received increasing attention for the removal of trace organic contaminants (e.g. pesticides and pharmaceuticals) from water bodies. However, the ozone dosing strategy has not yet been properly investigated, especially in real water matrices. Typically, one-step dosing is applied in literature. Nevertheless, optimal dosing is an important step for improving the process. This study investigates the effect of sequential ozone dosing on the PMS activation, atrazine (ATZ) removal, residual ozone concentration and radical exposure, and compares the results to those of a one-step ozone dosing approach. Experiments were performed in three water matrices with a different (in)organic content, i.e. secondary effluent, surface water and groundwater. In all matrices, the highest PMS activation was reached when applying three sequential ozone doses (3 × 5 mg O3/L). This resulted in a 3 times higher ATZ removal efficiency (up to 46 %) in secondary effluent compared to that obtained with a one-step ozone dosing (15 mg O3/L). In surface water and groundwater, similar ATZ removal (>90 %) was observed among the different ozone dosing strategies. However, the sulfate radical (SO4●-) exposure increased after each ozone addition. After three ozone additions of 5 mg/L, SO4●- contributed for 9 %, 26 % and 54 % to ATZ removal in respectively secondary effluent, surface water and groundwater. This high SO4●- contribution compared to ●OH contribution is an advantage as the selectivity of SO4●- gives rise to less radical scavenging by bulk organic matter and thus increases the (cost-)effectiveness of the O3/PMS process.


Asunto(s)
Atrazina , Ozono , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Atrazina/análisis , Agua
4.
Sci Total Environ ; 847: 157615, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901897

RESUMEN

The aim of this study was to assess the potential environmental impacts associated with microalgae systems for wastewater treatment and bioproducts recovery. In this sense, a Life Cycle Assessment was carried out evaluating two systems treating i) urban wastewater and ii) industrial wastewater (from a food industry), with the recovery of bioproducts (i.e. natural pigments and biofertilizer) and bioenergy (i.e. biogas). Additionally, both alternatives were compared to iii) a conventional system using a standard growth medium for microalgae cultivation in order to show the potential benefits of using wastewater compared to typical cultivation approaches. The results indicated that the system treating industrial wastewater with unialgal culture had lower environmental impacts than the system treating urban wastewater with mixed cultures. Bioproducts recovery from microalgae wastewater treatment systems can reduce the environmental impacts up to 5 times compared to a conventional system using a standard growth medium. This was mainly due to the lower chemicals consumption for microalgae cultivation. Food-industry effluent showed to be the most promising scenario for bioproducts recovery from microalgae treating wastewater, because of its better quality compared to urban wastewater which also allows the cultivation of a single microalgae species. In conclusion, microalgae wastewater treatment systems are a promising solution not only for wastewater treatment but also to boost the circular bioeconomy in the water sector through microalgae-based product recovery.


Asunto(s)
Microalgas , Purificación del Agua , Animales , Biocombustibles , Biomasa , Estadios del Ciclo de Vida , Aguas Residuales , Agua , Purificación del Agua/métodos
5.
Sci Total Environ ; 821: 153470, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093344

RESUMEN

Nature-based greywater (GW) treatment and reuse in urban areas has become an up-and-coming option. A 14.4 m2 green wall system called Total Value Wall (TVW) was installed at a terraced house in Gent (Belgium) for treating GW and reusing the effluent for toilet flushing. In a previous study, the TVW was loaded at 7 L.m-2.d-1 and efficiently removed TSS (67%), COD (43%), BOD5 (83%) and total coliforms (log 2), but a number of issues were reported related to nutrient leaching from the substrate, and the excessive retention time in the storage tanks. In this study results are reported from a follow-up study during which an adapted TVW was subjected to both higher hydraulic and pollutant loading rates in order to investigate the treatment capability of TVW. The design of the system, i.e. substrate contained in geotextile bags, did not sustain the higher hydraulic loading rates as excessive leakage occurred. Despite this, the higher pollutant loading rates still resulted in an acceptable effluent quality with 15 mg.L-1 TSS (90%), 85 mg.L-1 COD (82%), and 15 mg.L-1 BOD5 (95%). Ammonium, E. coli and total coliforms were removed with removal rates of 98%, 63% (0.4 log units), and 36% (0.2 log units), respectively. Finally, a life cycle assessment (LCA) was performed for the TVW with and without treating GW to analyze the environmental burden. The LCA impacts showed that replacing tap water and chemical fertilizer by GW, and the reuse of effluent, have a positive impact. However, the energy use for pumping has a major impact and should be minimized by using an efficient pump and distribution system to reduce the overall footprint.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Animales , Escherichia coli , Estudios de Seguimiento , Estadios del Ciclo de Vida , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Purificación del Agua/métodos
6.
Sci Total Environ ; 807(Pt 1): 150762, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34619182

RESUMEN

Biotreated landfill leachate contains much refractory organics such as humic and fulvic acids, which can be degraded by O3. However, the low O3 mass transfer and high energy cost limit its wide application in landfill leachate treatment. Previous studies proved that packed bubble columns could enhance the O3 mass transfer and increase the synthetic humic acids wastewater degradation, but the performance of packed bubble columns in real wastewater treatment has not been investigated. Therefore, this study aims to evaluate the feasibility of application of packed bubble column in the real biotreated landfill leachates treatment and provide insights into the transformation of organic matters in leachates during ozonation. Packed bubble columns with lava rocks or metal pall rings (LBC or MBC) were applied and compared with a non-packed bubble column (BC). At an applied O3 dose of 8.35 mg/(Lwater sample min), the initial COD (400 mg/L) was only removed for 26% in BC and 32% in MBC while this was 46% in LBC, indicating LBC has the best performance. GC-MS analysis shows that raw biotreated leachate contains potential endocrine disruptors such as di(2-ethylhexyl) phthalate (DEHP). 61% of DEHP was removed in LBC and the least intermediate oxidation products from humic- and fulvic-like organics was detected in LBC. The highest O3 utilization efficiency (89%) and hydroxyl radical (OH) exposure rate (3.0 × 10-10 M s) were observed in LBC with lowest energy consumption (EEO) for COD removal of 18 kWh/m3. The enhanced ozonation efficiency in LBC and MBC was attributed to the improved O3 mass transfer. Besides, LBC had additional adsorptive and catalytic activity that promoted the decomposition of O3 to generate OH. This study demonstrates that a packed bubble column increases removal and decreases energy use when treating landfill leachate, thus promoting the application of ozonation.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Sustancias Húmicas/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Bioresour Technol ; 342: 125993, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34592617

RESUMEN

Mathematical models for microalgae and cyanobacteria are seldomly validated for different algal species, as such limiting their applicability. Therefore, in this research, a previously developed kinetic model describing the growth of the green microalgae species Chlorella vulgaris was used to simulate the growth of the cyanobacterium Arthrospira platensis and the red alga Porphyridium purpureum. Based on a global sensitivity analysis, the model parameter µmax,A was calibrated using respirometric-titrimetric data. Calibration yielded values of 5.76 ± 0.17 d-1, 2.06 ± 0.16 d-1 and 1.06 ± 0.09 d-1 for Chlorella vulgaris, Arthrospira platensis and Porphyridium purpureum, respectively. Model simulations revealed that the biological growth equations in this model are adequate. However, increased light intensities triggered a survival mechanism for Arthrospira platensis, which is currently not taken into account by the model, leading to bad model accuracy under these circumstances. Future work should address the most important survival mechanisms and include those in the model to widen its applicability.


Asunto(s)
Chlorella vulgaris , Microalgas , Porphyridium , Spirulina , Biomasa
8.
Chemosphere ; 283: 131217, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34467950

RESUMEN

Ozonation has been widely applied for the oxidation of contaminants in wastewater, and the disinfection of water. However, low ozone (O3) mass transfer efficiency in common ozonation reactors requires high O3 doses and causes high energy consumption. In this study, to intensify the O3 mass transfer and oxidation of humic acids (HA) solution, a lava rock packed bubble column (LBC) and a metal pall ring packed bubble column (MBC) were developed and evaluated. In comparison with non-packed bubble column (BC), both LBC and MBC enhanced the O3 mass transfer efficiency and the generation of hydroxyl radicals, thereby increasing the HA removal from an aqueous solution. At applied O3 dose of 33.3 mg/(Lcolumn h), the HA removal efficiency in BC was only 47%. When MBC and LBC were applied, it increased to 66% and 72%, respectively. Meanwhile, the O3 utilization efficiency in LBC reached 68%, which was higher than that in MBC (50%) and BC (21%). Consequently, LBC has the lowest energy consumption (EEO) for HA removal (1.4 kWh/m3), followed by MBC (1.6 kWh/m3) and BC (2.9 kWh/m3). LBC had better performance than MBC due to the adsorptive and catalytic roles of lava rock on the ozonation process. This study demonstrates the advantages of using lava rocks as packed materials in O3 bubble column over metal pall rings in intensifying O3 mass transfer and organic matters removal, which provides some insights into promoting the industrial application of O3.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Sustancias Húmicas/análisis , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis
9.
J Environ Manage ; 298: 113489, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426216

RESUMEN

Greywater treatment and reuse for non-potable purposes in urban areas has become a widely researched topic to reduce the burden on fresh water resources. This study reports on the use of a green wall for treating grey water and reusing the effluent for toilet flushing, called Total Value Wall (TVW). Initially, the effectiveness of (mixtures of) different substrates, i.e. lava, lightweight expanded clay aggregates, organic soil and biochar was investigated by means of column tests. All substrates were first examined for hydraulic characteristics and later on the columns were fed with synthetic grey wastewater and followed up in terms of removal efficiency of COD and detergents. The mixture consisting of lava (50%), organic soil (25%) and biochar (25%) proved to be optimal both in terms of percolation rates and removal efficiencies, and was thus selected for the full-scale system. The full-scale TVW of 14.4 m2 was installed at a terraced house in Ghent (Belgium), and was loaded with grey water at 100 L per day. Influent and effluent quality were routinely monitored by grab sampling, water savings were monitored by means of flow meters, and electricity consumption was also accounted for. The TVW was further equipped with sensors that measure temperature, Particulate Matter (PM10) and CO2 in the air. The full-scale system obtained effluent concentrations of 13 mg.L-1 TSS, 91 mg.L-1 COD and 5 mg.L-1 BOD5. Ammonium and total coliforms were removed with removal rates of 97% and 99% (2 log units) respectively. However, an increase in effluent concentration of nitrate and phosphate was observed due to leaching from the selected substrate. Available data from the temperature sensors have clearly demonstrated the additional benefit of the TVW as an insulating layer, keeping the heat outside on warmer days, and keeping the heat inside on colder days. Overall, this study demonstrated that the TVW is a sustainable system for greywater treatment and reuse.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Reciclaje , Eliminación de Residuos Líquidos , Aguas Residuales , Agua
10.
Chemosphere ; 283: 131112, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34182629

RESUMEN

Because roofs represent a major part of the urban impervious surface, it is hypothesized that roof runoff is an important source of urban stormwater contamination. However, the contribution of different roofing materials to this contamination has only been examined to a limited extent. In this study, a resource and time efficient methodology, which uses some of the principles of a standardized leaching test (CEN/TS16637-2), was developed to identify material-pollutant relationships for sixteen commonly used roofing materials (EPDM, PVC, TPO, EVA, PU and bitumen membranes). Metals were detected in concentrations ranging from several µg/L in the leachate of synthetic materials up to 2.5 mg/L for Zn in the leachate of EPDM materials. Cd and Cr were not detected in any of the leachates. Furthermore, polycyclic aromatic hydrocarbons were detected in most leachates, with phenanthrene and naphthalene being most frequently detected in concentrations up to 4.5 µg/L for naphthalene. Further insights on organic pollutants' leaching from the tested materials were obtained by a non-target GC-MS screening of the leachates. Several commonly used additives such as flame retardants and light stabilizers were detected. Although no information on long-term leaching and material behavior under outdoor conditions could be obtained by the developed methodology, the laboratory test results could be used to benchmark the materials for their potential impact on roof runoff quality by the calculation of material indexes (which summarize the material-pollutant relationships). EPDM and PU roofing materials were identified as the materials having the highest potential to affect roof runoff quality.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Benchmarking , Monitoreo del Ambiente , Laboratorios , Lluvia , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 784: 147048, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33894600

RESUMEN

With the emerging need of nutrient recycling in resource recovery facilities, the use of microalgae-bacteria flocs has received considerable attention in the past few years. However, although the main biological processes are already known, the complex interactions occurring between algae and bacteria are not fully understood. In this work, a combined respirometric-titrimetric unit was used to assess the microorganisms' kinetics within microalgae-bacteria flocs under different growth regimes (i.e. photoautotrophic, heterotrophic and mixotrophic) and different ratios of inorganic (IC) to organic carbon (OC) (IC:OC-ratios). Using this respirometric-titrimetric data, a new model was developed, calibrated and successfully validated. The model takes into account the heterotrophic growth of bacteria, the photoautotrophic, heterotrophic and mixotrophic growth of algae and the production and consumption of extracellular polymeric substances (EPS) by both bacteria and algae. As such, the model can be used for detailed analysis of the carbon fluxes within microalgae-bacteria flocs in an efficient way. Model analysis revealed the high importance of the EPS regulatory mechanism. Firstly, under heterotrophic growth conditions, OC-uptake occurred during the first 10-15 min. This was linked with internal OC storage (49% of added OC) and EPS production (40%), as such providing carbon reserves which can be consumed during famine conditions. Moreover, the algae were able to compete with bacteria for OC. Secondly, under photoautotrophic conditions, algae used the added IC to grow (57% of added IC) and to produce EPS (29%), which consecutively stimulated heterotrophic bacteria growth (20%). Finally, under mixotrophic conditions, low IC:OC-ratios resulted in an extensive OC-storage and EPS production (50% of added C) and an enhanced microalgal CO2 reuse, resulting in an increased algal growth of up to 29%.


Asunto(s)
Microalgas , Bacterias , Biomasa , Carbono , Ciclo del Carbono , Procesos Heterotróficos
12.
Sci Total Environ ; 778: 146152, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714826

RESUMEN

Many studies have reported conventional wastewater treatment plants as one of the main sources of microplastics (MPs). However, constructed wetlands (CWs) as a nature-based wastewater treatment system have received little attention. This study investigated the influence of biofilm, media type and earthworms on the fate and removal of MPs in a short-term (45d) experiment with unplanted lab-scale vertical flow CWs (VFCWs). In sand-filled VFCWs, MPs were retained in the first 10 cm, and the removal efficiency was 100%, regardless of the presence of a biofilm. When gravel was used as filling material, the removal efficiency of MPs was stable at 96%, but the MPs were distributed throughout the 80 cm high VFCWs. In the presence of earthworms, the maximum depth that MPs reached within sand-filled VFCWs increased from 10 to 15 cm. Furthermore, the MPs concentration at a depth of 3-6 cm and 6-10 cm increased 2 and 10 fold respectively compared to the same VFCWs without earthworms. Although no MPs were detected in the sand from deep layers (15-80 cm), transport of MPs from top to the bottom by earthworms was found, and a few MPs were detected in the effluent, leading to a removal efficiency of 99.8%. This study indicated that both a higher media grain size and the presence of earthworms have a small effect on the removal efficiency of MPs in VFCWs, but the effect on the distribution of MPs was considerably. Longer-term studies in full-scale CWs are advised to perform under the influence of more practical factors.

13.
ACS Sustain Chem Eng ; 8(29): 10691-10701, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32953285

RESUMEN

This study assessed the recovery of natural pigments (phycobiliproteins) and bioenergy (biogas) from microalgae grown in wastewater. A consortium of microalgae, mainly composed by Nostoc, Phormidium, and Geitlerinema, known to have high phycobiliproteins content, was grown in photobioreactors. The growth medium was composed by secondary effluent from a high rate algal pond (HRAP) along with the anaerobic digestion centrate, which aimed to enhance the N/P ratio, given the lack of nutrients in the secondary effluent. Additionally, the centrate is still a challenging anaerobic digestion residue since the high nitrogen concentrations have to be removed before disposal. Removal efficiencies up to 52% of COD, 86% of NH4 +-N, and 100% of phosphorus were observed. The biomass composition was monitored over the experimental period in order to ensure stable cyanobacterial dominance in the mixed culture. Phycocyanin and phycoerythrin were extracted from harvested biomass, achieving maximum concentrations of 20.1 and 8.1 mg/g dry weight, respectively. The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy.

14.
Water Sci Technol ; 81(8): 1786-1796, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32644971

RESUMEN

The increase of fluorescent natural organic matter (fNOM) fractions during drinking water treatment might lead to an increased coagulant dose and filter clogging, and can be a precursor for disinfection by-products. Consequently, efficient fNOM removal is essential, for which characterisation of fNOM fractions is crucial. This study aims to develop a robust monitoring tool for assessing fNOM fractions across water treatment processes. To achieve this, water samples were collected from six South African water treatment plants (WTPs) during winter and summer, and two plants in Belgium during spring. The removal of fNOM was monitored by assessing fluorescence excitation-emission matrices datasets using parallel factor analysis. The removal of fNOM during summer for South African WTPs was in the range 69-85%, and decreased to 42-64% in winter. In Belgian WTPs, fNOM removal was in the range 74-78%. Principal component analysis revealed a positive correlation between total fluorescence and total organic carbon (TOC). However, TOC had an insignificant contribution to the factors affecting fNOM removal. Overall, the study demonstrated the appearance of fNOM in the final chlorinated water, indicating that fNOM requires a customised monitoring technique.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Bélgica , Desinfección , Análisis Factorial , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia
15.
Sci Total Environ ; 737: 139630, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32505022

RESUMEN

Temporary events such as music festivals are often organized in places that are not connected to a sewage network. As such, the waste (water) generated and discharged can place a heavy burden on the environment. A mobile vertical flow constructed wetland (MCW) with an area of 15 m2 was constructed, optimized and operated for three years treating grey water (GW) as well as grey and black water (GW + BW) at different festival locations to tackle this problem. During the initial development phase, the appropriate influent type (GW and/or GW + BW) was determined and challenge tests with pre-settled diluted domestic waste water (mimicking GW) were carried out to determine the maximal allowable loading rate. The MCW was able to treat both types of water. However, for further experiments GW was selected as the discharge limits could not be met when treating GW + BW. The challenge tests demonstrated that the MCW could be operated at a maximal allowable hydraulic loading rate of 1.1 m3·m-2·d-1, corresponding to mass loading rates of 68 gTSS·m-2·d-1, 160 gCOD·m-2·d-1 and 137 gBOD·m-2·d-1. During treatment of GW, the MCW achieved effluent concentrations for respectively chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS) and total phosphorus (TP) of 43 mg·L-1, 16 mg·L-1, 2.7 mg·L-1 and 1.7 mgP·L-1. This corresponds to a removal of 90% (COD), 95% (BOD), 97% (TSS) and 76% (TP) respectively. Total nitrogen removal was 25% (from 45 mgN·L-1 to 34 mgN·L-1) as particularly denitrification was not complete. As a further development, the MCW was coupled to a drinking water treatment system using ultrafiltration and reverse osmosis (UF-RO) membranes to produce potable water on site. The drinking water system produced potable water that met the legislative criteria. As such, a sustainable and mobile water treatment system aiming at producing potable water at temporary events was demonstrated.


Asunto(s)
Agua Potable , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales
16.
Bioresour Technol ; 303: 122894, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32032937

RESUMEN

The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery.


Asunto(s)
Microalgas , Porphyridium , Spirulina , Biomasa , Aguas Residuales
17.
Water Res ; 161: 549-559, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31233967

RESUMEN

Pesticides are emerging contaminants frequently detected in the aquatic environment. In this work, a novel approach combining activated carbon adsorption, oxygen plasma treatment and ozonation was studied for the removal of the persistent chlorinated pesticide alachlor. A comparison was made between the removal efficiency and energy consumption for two different reactor operation modes: batch-recirculation and single-pass mode. The kinetics study revealed that the insufficient removal of alachlor by adsorption was significantly improved in terms of degradation efficiency and energy consumption when combined with the plasma treatment. The best efficiency (ca. 80% removal with an energy cost of 19.4 kWh m-³) was found for the single-pass operational mode of the reactor. In the batch-recirculating process, a complete elimination of alachlor by plasma treatment was observed after 30 min of treatment. Analysis of the reactive species induced by plasma in aqueous solutions showed that the decomposition of alachlor mainly occurred through a radical oxidation mechanism, with a minor contribution of long-living oxidants (O3, H2O2). Investigation of the alachlor oxidation pathways revealed six different oxidation mechanisms, including the loss of aromaticity which was never before reported for plasma-assisted degradation of aromatic pesticides. It was revealed that the removal rate and energy cost could be further improved with more than 50% by additional O3 gas bubbling in the solution reservoir.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Acetamidas , Peróxido de Hidrógeno , Oxidación-Reducción , Agua
18.
Chemosphere ; 234: 715-724, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31234088

RESUMEN

Over the last years, there has been a growing interest in the use of Advanced Oxidation Processes (AOPs) for the elimination of micropollutants. This work attempts to compare the efficiency of conventional UV, O3 and H2O2 based AOPs with a relatively new AOP based on plasma-ozonation, in terms of removal and energy efficiency. The experimental study is performed in a synthetic water matrix spiked with four different micropollutants: atrazine (ATZ), alachlor (ALA), bisphenol A (BPA) and 1,7-α-ethinylestradiol (EE2). For the different processes examined in this study, O3 - based AOPs are more effective compared to UV based techniques in terms of energy efficiency. Although the energy efficiency of plasma-ozonation falls between the energy cost of O3 and UV-based AOPs, the removal kinetics generally proceed faster compared to other AOPs, achieving complete elimination (>99.8% removal) of the target compounds within 20 min of treatment. Moreover, the results suggest that improvement in the mass-transfer in the plasma-ozonation setup permits to further decrease the energy cost of this process up to electrical energy per order (EE/O) values between 2.54 and 0.124 kWh m-³, which is already closer to the energy efficiency of ozonation (EE/O = 0.73-0.084 kWh m-³).


Asunto(s)
Ozono/química , Gases em Plasma/química , Rayos Ultravioleta , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/economía , Purificación del Agua/métodos , Peróxido de Hidrógeno/química , Radical Hidroxilo , Oxidación-Reducción , Contaminantes Químicos del Agua/química
19.
Bioresour Technol ; 280: 27-36, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30754003

RESUMEN

The aim of this study was to assess the effect of primary treatment on the performance of two pilot-scale high rate algal ponds (HRAPs) treating urban wastewater, considering their treatment efficiency, biomass productivity, characteristics and biogas production potential. Results indicated that the primary treatment did not significantly affect the wastewater treatment efficiency (NH4+-N removal of 93 and 91% and COD removal of 62 and 65% in HRAP with and without primary treatment, respectively). The HRAP without primary treatment had higher biodiversity and productivity (20 vs. 15 g VSS/m2d). Biomass from both systems presented good settling capacity. Results of biochemical methane potential test showed that co-digesting microalgae and primary sludge led to higher methane yields (238-258 mL CH4/g VS) compared with microalgae mono-digestion (189-225 mL CH4/g VS). Overall, HRAPs with and without primary treatment seem to be appropriate alternatives for combining wastewater treatment and bioenergy recovery.


Asunto(s)
Biomasa , Metano/metabolismo , Estanques , Biocombustibles , Microalgas , Aguas del Alcantarillado , Aguas Residuales
20.
Environ Technol ; 40(13): 1756-1768, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30702027

RESUMEN

The presence and persistence of natural organic matter (NOM) in drinking water treatment plants (WTPs) requires a robust and rapid monitoring method. Measurement and monitoring of NOM fractions using current technology is time-consuming and expensive. This study uses fluorescence measurements in combination with Parallel Factor (ParaFac) analysis to characterize NOM fractions. This was achieved through: (1) determining the origin and composition of NOM fractions using fluorescence index (FI), humification index, biological index, and freshness index, and (2) using multivariate analysis to reveal key parameters and hidden NOM fraction characteristics influenced by seasonal changes and environmental activities. The ParaFac model revealed that the NOM fractions for Belgium plants are mainly hydrophobic acids, aromatic proteins, biological activity, humic acid-like, and fulvic acid-like moieties. The NOM fractions in South African plants were mainly aromatic protein, humic acid-like, fulvic acid-like, tryptophan-like, and protein-like moieties. For Belgium plants in spring FI >1.7, indicating high microbial sources, whereas FI < 1.3 for South African plants, signifying terrestrial sources of NOM. On the one hand, the first principal component (PC1) interpreted 33.02% of the total variance, and is a measure of fluorescent NOM relative concentration. On the other hand, the PC2 interpreted 21.47% and contains most of the information on humification, freshness, and biological indicators, while PC3 interpreted 17.74% and contains information on the origin and variation in environmental conditions. These results will assist in developing a method for online monitoring of NOM fractions in water sources based on environment activities and spectral measurements.


Asunto(s)
Sustancias Húmicas , Purificación del Agua , Bélgica , Estaciones del Año , Sudáfrica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...