Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Carbohydr Polym ; 318: 121102, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37479451

Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.

2.
Environ Res ; 232: 116353, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37295591

Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.


Metal-Organic Frameworks , Nanoparticles , Nanostructures , Catalysis , Reproduction
3.
Chemosphere ; 337: 139267, 2023 Oct.
Article En | MEDLINE | ID: mdl-37343631

Recently, there has been a significant increase in the interest of using photocatalysis for environmental clean-up applications. In this research, potassium, and phosphorus co-doped graphitic carbon nitride (KPCN) photocatalyst modified with graphene oxide (GO) and heterostructured with ZnFe2O4 was synthesized via the hydrothermal method (KPCN/GO/ZnFe2O4). The photoactivity of KPCN/GO/ZnFe2O4 photocatalyst was examined for the photocatalytic degradation of target pollutants such as methylene blue (MB) dye, rhodamine B (RhB) dye, and tetracycline (TC) antibiotic. Furthermore, the chemical oxygen demand (COD) removal efficiency for real wastewater was determined to explore the practical application of KPCN/GO/ZnFe2O4 photocatalyst. The degradation efficiencies of bare graphitic carbon nitride, KPCN, KPCN/GO, and KPCN/GO/ZnFe2O4 photocatalysts for tetracycline antibiotics were 30%, 42%, 57%, and 87% within 60 min, respectively. Moreover, KPCN/GO/ZnFe2O4 photocatalyst showed 71% COD removal efficiency within 240 min. The •OH and •O2- were the major reactive species in the photocatalytic process. Results showed that the degradation efficiencies of graphitic carbon nitride were greatly enhanced upon doping and further improved with the addition of GO and ZnFe2O4. Doping improved light harvesting, GO enhanced the adsorption ability and heterojunction with ZnFe2O4 enhanced the charge separation as well as the reusability of synthesized KPCN/GO/ZnFe2O4 photocatalyst.


Anti-Bacterial Agents , Water Purification , Adsorption , Tetracyclines , Light , Catalysis
4.
Chemosphere ; 333: 138873, 2023 Aug.
Article En | MEDLINE | ID: mdl-37164195

Over the past several decades, the increase in industrialization provoked the discharge of harmful pollutants into the environment, affecting human beings and ecosystems. ZnO-based photocatalysts seem to be the most promising photocatalysts for treating harmful pollutants. However, fast charge carrier recombination, photo corrosion, and long reaction time are the significant factors that reduce the photoactivity of ZnO-based photocatalysts. In order to enhance the photoactivity of such photocatalysts, a combined process i.e., sonocatalysis + photocatalysis = sonophotocatalysis was used. Sonophotocatalysis is one of several different AOP methods that have recently drawn considerable interest, as it produces high reactive oxygen species (ROS) which helps in the oxidation of pollutants by acoustic cavitation. This combined technique enhanced the overall efficiency of the individual method by overcoming its limiting factors. The current review aims to present the theoretical and fundamental aspects of sonocatalysis and photocatalysis along with a detailed discussion on the benefits that can be obtained by the combined process i.e., US + UV (sonophotocatalysis). Also, we have provided a comparison of the excellent performance of ZnO to that of the other metal oxides. The purpose of this study is to discuss the literature concerning the potential applications of ZnO-based sonophotocatalysts for the degradation of pollutants i.e., dyes, antibiotics, pesticides, phenols, etc. That are carried out for future developments. The role of the produced ROS under light and ultrasound stimulation and the degradation mechanisms that are based on published literature are also discussed. In the end, future perspectives are suggested, that are helpful in the development of the sonophotocatalysis process for the remediation of wastewater containing various pollutants.


Environmental Pollutants , Zinc Oxide , Humans , Reactive Oxygen Species , Ecosystem , Catalysis , Water
5.
Environ Sci Pollut Res Int ; 30(31): 77622-77641, 2023 Jul.
Article En | MEDLINE | ID: mdl-37258806

In this work, CQDs decorated MnIn2S4/CdS/Bi2S3 heterojunction was prepared successfully by hydrothermal technique for photocatalytic disinfection of Escherichia coli (E. coli) and mineralization of methyl orange (MO) dye. The charge transferal route and mineralization process in CQDs-MnIn2S4/CdS/Bi2S3 heterojunction were comprehensively investigated by advanced spectroscopic techniques. The improved visible-light activity and enhanced photo-generated charge transferal efficacy caused dual Z-scheme CQDs-MnIn2S4/CdS/Bi2S3 heterojunction to achieve boosted photodegradation ability. The catalytic degradation trend was followed as CQDs-MnIn2S4/CdS/Bi2S3 > MnIn2S4 > CdS > Bi2S3. The dye was mineralized within 180 min under visible light irradiation. The effect of reaction parameters, pH effect, catalyst dosage, and H2O2 addition on MO degradation was also investigated. The degradation rate was maximal at pH 4 with a pseudo-first-order rate constant, 0.0438 min-1. The assessment of antibacterial properties revealed that CQDs-MnIn2S4/CdS/Bi2S3 composite effectively inactivated E. coli under visible light. Scavenging experiments, transient photocurrent response, and electron spin resonance spectroscopy suggested that •[Formula: see text] and holes were the dominant reactive species. The Z-scheme heterojunction is recyclable up to ten photocatalytic cycles according to recycling experiments. This research indicates the importance of dual Z-scheme CQDs decorated MnIn2S4/CdS/Bi2S3 heterojunction in wastewater remediation.


Carbon , Quantum Dots , Quantum Dots/chemistry , Escherichia coli , Hydrogen Peroxide , Anti-Bacterial Agents/chemistry , Light
6.
Chemosphere ; 320: 138015, 2023 Apr.
Article En | MEDLINE | ID: mdl-36746247

Doping-induced vacancy engineering of graphitic carbon nitride (GCN) is beneficial for bandgap modulation, efficient electronic excitation, and facilitated charge carrier migration. In this study, synthesis of oxygen and sulphur co-doped induced N vacancies (OSGCN) by the hydrothermal method was performed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) antibiotic degradation and H2 production. The results from experimental and DFT simulation studies validate the synergistic effects of co-dopants and N-vacancies, i.e., bandgap lowering, electron-hole pairs separation, and high solar energy utilization. The substitution of sp2 N atom by O and S co-dopants causes strong delocalization of HOMO-LUMO distribution, enhancing carrier mobility, increasing reactive sites, and facilitating charge-carrier separation. Remarkably, OSGCN/PMS photocatalytic system achieved 99.4% SMX degradation efficiency and a high H2 generation rate of 548.23 µ mol g-1 h-1 within 60 min and 36 h, respectively under visible light irradiations. The SMX degradation kinetics was pseudo-first-order with retained recycling efficiency up to 4 catalytic cycles. The results of EPR and chemical scavenging experiments revealed the redox action of reactive oxidative species, wherein 1O2 was the dominant reactive species in SMX degradation. The identification of formed intermediates and the SMX stepwise degradation pathway was investigated via LC-MS analysis and DFT studies, respectively. The results from this work anticipated deepening the understanding of PMS activation by substitutional co-doping favoring N-vacancy formation in GCN lattice for improved photocatalytic activity.


Graphite , Sulfamethoxazole , Sulfamethoxazole/chemistry , Peroxides/chemistry , Graphite/chemistry , Oxygen
7.
Environ Sci Pollut Res Int ; 30(60): 124902-124920, 2023 Dec.
Article En | MEDLINE | ID: mdl-36607579

This work successfully fabricated graphitic carbon nitride and magnetically recoverable α-Fe2O3/g-C3N4/SiO2 photo-Fenton catalysts using thermal polycondensation and in situ-simple precursor drying-calcination process, respectively, was examined for model synthetic rhodamine B (RhB) dye in the presence of H2O2 and acidic pH under simulated visible light irradiation. An aqueous suspension of the reaction mixture of dye-containing wastewater was fully degraded and reached 97% of photo-Fenton degradation efficiency within 120 min followed by the production of hydroxyl radical (•OH). The dominant hydroxyl radical position generated surface charge, electrostatic potential distribution, and average local ionization potential, which contributed to the complete mineralization of RhB dye, according to the density functional theory (DFT) calculations. HPLC and GCMS experiments were performed to examine the degradation fragments of RhB and draw a plausible mechanistic pathway which showed that RhB degradation generated a series of N-deethylated products, followed by a one-time ring-opening, which indicated that photosensitization induced a photocatalysis reaction mechanism.


Hydrogen Peroxide , Silicon Dioxide , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Light , Catalysis
8.
Sci Rep ; 13(1): 379, 2023 Jan 07.
Article En | MEDLINE | ID: mdl-36611044

A carbon-fiber (Cf) doped TiB2-SiC composite was prepared and investigated to determine its densification behavior, micro/nanostructural properties, and mechanical characteristics. TiB2-25 vol% SiC-2 wt% Cf was prepared at 40 MPa and 1800 °C for 7 min using the pulsed electric-current sintering technique, and a relative density of 98.5% was realized. The as-sintered composite was characterized using advanced techniques, e.g., X-ray diffractometry, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, field-emission electron probe micro-analysis, and nanoindentation. The Cf additive could remove the surface oxide layers from the TiB2 and SiC domains, thus transforming them into TiB2 and SiC. According to micro/nanostructural studies, Cf could not retain its initial structure and was eventually converted into graphite nanosheets. In addition, the prepared composite was examined using the nanoindentation technique, and the following results were obtained for the calculated hardness, elastic modulus, and stiffness values: TiB2 > SiC > TiB2/SiC interface.

9.
Environ Res ; 222: 115349, 2023 04 01.
Article En | MEDLINE | ID: mdl-36709022

Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.


Metal-Organic Frameworks , Nanocomposites , Water Purification , Nanocomposites/chemistry , Catalysis , Adsorption
10.
Int J Biol Macromol ; 226: 1284-1308, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36574582

In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.


Cellulose , Environmental Pollutants , Cellulose/chemistry , Reproducibility of Results , Polymers/chemistry , Biocompatible Materials
11.
Environ Res ; 215(Pt 1): 114213, 2022 12.
Article En | MEDLINE | ID: mdl-36055393

New wood-based composite materials with thermal conductivity are greatly desired in the fields of packaging materials for electronic components. In this study, a new multifunctional composite material (M@FC) is prepared by simply blending clay-like Ti3C2Tx MXene and delignified wood fibers together, and then followed by an infusing epoxy resin with environmentally friendly vacuum assisted resin transfer molding (VARTM) process. The resulting M@FC (0.92 W m-1 K-1) possesses superior thermal conductivity as compared to natural wood (0.099 W m-1 K-1) and most polymers. Furthermore, after the VARTM process, the structure of the M@FC is tighter, and thus showing excellent mechanical properties (tensile strength of 93.0 MPa and flexural strength of 172.7 MPa). In addition, good water resistance and excellent flame retardant property are observed for M@FC. The improvement of thermal conductivity provides the possibility for its application for packaging materials in electronic components. This study using waste wood as the important component provides a new idea for carbon cycling and recycling of natural resources.


Carbon Footprint , Flame Retardants , Carbon/chemistry , Clay , Epoxy Resins , Lignin , Polymers/chemistry , Thermal Conductivity , Water/chemistry
12.
Chemosphere ; 307(Pt 4): 136105, 2022 Nov.
Article En | MEDLINE | ID: mdl-35988770

The SnO2 and SnO2/rGO nanostructures were successfully synthesized using the facile hydrothermal synthesis technique. The prepared nanostructures were well studied using different techniques such as XRD, XPS, UV-DRS, FT-IR, EDX, SEM and HR-TEM analysis. The crystalline nature of SnO2 and SnO2/rGO was confirmed by the XRD technique. The formation of highly pure SnO2 and SnO2/rGO nanostructures was confirmed by EDX analysis. The morphological results show the good agglomeration of several spherical nanoparticles. The optical properties were studied through the UV-DRS technique and the bandgap energies of SnO2 and SnO2/rGO are estimated to be 3.12 eV and 2.71 eV, respectively. The photocatalytic degradation percentage in presence of SnO2 and SnO2/rGO against RhB was found to be 96% and 98%, respectively. The degradation of TTC molecules was estimated as 90% and 88% with SnO2/rGO and SnO2, respectively. The degradation of both RhB and TTC molecules was well suited with the pseudo-first-order kinetics. The results of successive experiments clearly show the enhancement in the photocatalytic properties in the SnO2/rGO nanostructures.


Environmental Pollutants , Nanocomposites , Catalysis , Graphite , Kinetics , Nanocomposites/chemistry , Pharmaceutical Preparations , Spectroscopy, Fourier Transform Infrared , Tin Compounds/chemistry
13.
Food Chem Toxicol ; 163: 112972, 2022 May.
Article En | MEDLINE | ID: mdl-35398181

This work reports the synthesis of the silver-platinum bimetallic nanoparticles (N@Pt-Ag BNPs) reduced by an ethanolic extract of black seed (Nigella sativa, N) using the green synthesis method, these nanoparticles show a great antibacterial, anticancer, and catalytic activity. The characterization of physicochemical properties of Ag-Pt BNP was carried out using UV-visible spectroscopy (Uv-vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Transmission electron microscope (TEM) analysis. The structural morphology shows that the N@Pt-Ag BNPs are spherical particles with a diameter of 5.6 nm. The cytotoxic effects of N@Pt-Ag BNPs were examined by MTT test in human breast cancer, human colon cancer, human pancreatic cancer, L929-Murine fibroblast cells. N@Pt-Ag BNPs have been observed to be much more effective in breast cancer cell lines. The cytotoxic effect of N@Pt-Ag BNPs against healthy L929-murine fibroblast cell lines was not observed. Also, high antibacterial activity on each of the bacteria Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (S. aureus), where we note that most strains of E. coli and S. aureus were damaged with a 73% percentage, 67% bacterial inhibition respectively. The results of the catalytic activities of N@Pt-Ag BNPs were obtained by performing the hydrolysis experiments of sodium borohydride (NaBH4). According to the results obtained, TOF, enthalpy, entropy, and activation energy, values were found to be 2497.14 h-1, 13.52 kJ/mol, -137.47 J/mol.K, 16.02 kJ/mol, respectively. N@Pt-Ag BNPs were found to be highly effective catalysts for hydrogen production which this was also confirmed by the machine learning model. The photocatalytic activity of N@Pt-Ag BNPs was tested against methylene blue (MB) dye and the highest activity was found as 80%.


Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azo Compounds/pharmacology , Escherichia coli , Humans , Hydrogen/pharmacology , Machine Learning , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Photolysis , Silver/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , X-Ray Diffraction
14.
Chemosphere ; 301: 134626, 2022 Aug.
Article En | MEDLINE | ID: mdl-35436454

This work reports on graphitic carbon nitride (C3N4) modified with silver to investigate its visible-light-driven photocatalysis for decomposition of micropollutants in wastewater. Various characterization methods were conducted to examine the physico-chemical properties of Ag-doped C3N4 (Ag-C3N4) photocatalyst. The results from structural, morphological, and surface chemical analysis indicated that C3N4 was successfully doped with Ag. Photoluminescence and transient photocurrent density studies revealed that the recombination rate of electron-hole pairs was reduced, leading to the enhancement of photocatalytic activities of the photocatalyst. Ag-C3N4 showed high photocatalytic performance for photodegradation of our target micropollutant, bisphenol A (BA). It could completely remove BA in 1 h with kinetic constant 6.2 times higher than that of the undoped C3N4 photocatalyst. Recycling test and the assessment of the photocatalyst in wastewater further confirmed the excellent stability and applicability of the Ag-C3N4 photocatalyst. This work could provide a new solution to the practical application of photocatalyts for the degradation of micropollutants in wastewater.


Nitrogen Compounds , Wastewater , Catalysis , Graphite , Nitrogen Compounds/chemistry , Photolysis
15.
Environ Res ; 212(Pt C): 113301, 2022 09.
Article En | MEDLINE | ID: mdl-35483412

The formation of phase pure magnetically separable α-Fe2O3 and α-Fe2O3/rGO nanostructures were achieved through a simple hydrothermal technique. The properties of synthesized materials were investigated through different analytical techniques. The formation of phase pure FO and FO/rGO nanostructures were confirmed by XRD analysis with crystallite size of about ∼42 nm and ∼65 nm, respectively. The morphological analysis reveals the formation of sphere-like nanoparticles with high agglomeration. The UV-DRS analysis clearly shows the enhanced visible-light activity of FO/rGO nanoparticles. The BET analysis revealed the mesoporous property of FO/rGO nanocomposite. The enhancement in the photoinduced charge transfer process is observed after including rGO nanoparticles with FO. The photocatalytic efficiency of nanomaterials was analyzed using tetracycline and ibuprofen as model organic pollutants under white LED irradiation. The enhanced photocatalytic degradation ability of FO/rGO nanocomposite is studied against both tetracycline and ibuprofen molecules.


Ibuprofen , Nanocomposites , Tetracycline , Anti-Bacterial Agents , Catalysis , Graphite , Ibuprofen/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Photochemical Processes , Tetracycline/chemistry
16.
Sci Rep ; 12(1): 2004, 2022 Feb 07.
Article En | MEDLINE | ID: mdl-35132114

A wide variety of electrocatalysts has been evolved for hydrogen evolution reaction (HER) and it is reasonable to carry out HER with low cost electrocatalyst and a good efficiency. In this study, Cu3N was synthesized by nitridation of Cu2O and further utilized as an electrocatalyst towards HER. The developed Cu3N electrocatalyst was tested and results showed a low overpotential and moderate Tafel slope value (overpotential: 149.18 mV and Tafel slope 63.28 mV/dec at 10 mA/cm2) in alkaline medium with a charge transfer resistance value as calculated from electrochemical impendence spectroscopy being 1.44 Ω. Further from the experimental results, it was observed that the reaction kinetics was governed by Volmer-Heyrovsky mechanism. Moreover, Cu3N has shown an improved rate of electron transfer and enhanced accessible active sites, due to its structural properties and electrical conductivity. Thus the overall results show an excellent electrochemical performance, leading to a new pathway for the synthesis of low cost electrocatalyst for energy conversion and storage.

17.
Chemosphere ; 293: 133541, 2022 Apr.
Article En | MEDLINE | ID: mdl-34998850

MXenes family has aroused marvelous consideration as a frontier photoactive candidate for solar energy transformation and environmental remediation. 2D Ti3C2 exhibit a unique layered microstructure, large surface functional groups (-F, -OH, -O), substantial sorption selectivity, superior reduction efficiency, and electrical conductivity. Electronically conductive Ti3C2Tx with tunable energy band gap (0.92-1.75eV) makes it one of the most potential photoactive materials for photodegradation. The present review paper aims to design cost-effective heterojunctions and Schottky junctions of Ti3C2 with transition metal oxides, sulfides, g-C3N4, and other organic frameworks. The discussion mainly involves different aspects related to its tunable electronic structure, stability problems, and surface morphology control. In addition, the advantages of Ti3C2 in fabricating highly efficient Ti3C2 based catalytic junctions exhibiting suppressed charge carrier recombination are discussed with particular emphasis on their adsorption and redox properties for the removal of toxic dyes, heavy metal ions, and various pharmaceuticals. Finally, current challenges and research directions are outlined and prospected for the future development of Ti3C2 based photocatalytic systems.


Environmental Pollutants , Environmental Restoration and Remediation , Catalysis , Titanium/chemistry
19.
Chemosphere ; 291(Pt 2): 132781, 2022 Mar.
Article En | MEDLINE | ID: mdl-34748802

Recently, solar energy has been considered the most vulnerable source to resolve environmental pollution and energy scarcity problems. Researchers have made intense research efforts to convert solar energy into chemical energy through photocatalysis processes as it is a green, clean and renewable energy source. Numerous discovered photocatalysts show absorption in the ultraviolet-visible (UV∼5% and visible ∼43%) region and are devoid of near-infrared (NIR ∼52%) light utilization. As infrared (IR) light contains a top portion of the solar spectrum; therefore, many alluring and attractive practical strategies have been explored to improve photocatalytic reactions and to harness full solar spectrum (including NIR light). Among those strategies, bandgap engineering, coupling with carbon quantum dots, heterostructure formation, mingling with plasmonic and upconversion (UC) NPs are more worthwhile. In different visible light-assisted photocatalysts, bismuth typically covers a distinctive, favorable, and earth-abundant group of freshly discovered innovative photocatalytic nanomaterials. Bi-based photocatalysts have suitable/good optoelectronic properties, crystalline geometric conformations, amendable electronic structure, and outstanding visible-light responsive range, helpful in environmental remediation and energy transformation. Due to the outstanding photo-oxidization/photodegradation capability of NIR-driven photocatalysts, bismuth-based nanomaterials have been considered suitable photocatalysts for inclusive solar energy utilization. Henceforth, keeping in mind the benefits of bismuth nanomaterials, the present review is focused on NIR-based modification strategies to upgrade solar light absorption of bismuth-based photocatalysts in the NIR region by making it NIR responsive photocatalyst. We have also discussed the photocatalytic applications of bismuth-based NIR responsive photocatalysts in pollutant degradation.


Environmental Pollutants , Nanocomposites , Bismuth , Catalysis , Photolysis
...