Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
J Leukoc Biol ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38657004

N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood. To assess the role of m6A in CD4+ T lymphocyte activation and function, we assessed the transcriptome-wide m6A landscape of human primary CD4+ T cells by methylated RNA immunoprecipitation (meRIP) sequencing. Stimulation of the T cells impacted the m6A pattern of hundreds of transcripts including tumor necrosis factor (TNF). m6A methylation was increased on TNF mRNA after activation, predominantly in the 3' untranslated region (UTR) of the transcript. Manipulation of m6A levels in primary human T cells, the directly affected the expression of TNF. Furthermore, we identified that the m6A reader protein YT521-B homology domain family-2 (YTHDF2) binds m6A-methylated TNF mRNA, and promotes its degradation. Taken together, this study demonstrates that TNF expression in CD4+ T lymphocytes is regulated via m6A and YTHDF2, thereby providing novel insight into the regulation of T cell effector functions.


T helper cells are immune cells of the adaptive immune system. These cells are activated by antigen presenting cells that have engulfed invading pathogens. When the T helper cell is activated, it will produce and excrete signaling molecules (cytokines) that activate other immune cells in order to eradicate these pathogens. Cytokines are formed after translation of RNA molecules that encode for these cytokines. In this study it was found that a modification (m6A) on RNA molecules is involved in the regulation of the life cycle of these RNA molecules. It was found that the degradation of RNA encoding for cytokine TNF was mediated through m6A and its 'reader' protein YTHDF2 in activated T helper cells. As TNF promotes inflammation, reduction of TNF production through this mechanism dampens the immune response and therefore prevents chronic inflammation.

2.
Cell Genom ; 4(1): 100460, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38190099

Single-nucleotide polymorphisms (SNPs) near the ERAP2 gene are associated with various autoimmune conditions, as well as protection against lethal infections. Due to high linkage disequilibrium, numerous trait-associated SNPs are correlated with ERAP2 expression; however, their functional mechanisms remain unidentified. We show by reciprocal allelic replacement that ERAP2 expression is directly controlled by the splice region variant rs2248374. However, disease-associated variants in the downstream LNPEP gene promoter are independently associated with ERAP2 expression. Allele-specific conformation capture assays revealed long-range chromatin contacts between the gene promoters of LNPEP and ERAP2 and showed that interactions were stronger in patients carrying the alleles that increase susceptibility to autoimmune diseases. Replacing the SNPs in the LNPEP promoter by reference sequences lowered ERAP2 expression. These findings show that multiple SNPs act in concert to regulate ERAP2 expression and that disease-associated variants can convert a gene promoter region into a potent enhancer of a distal gene.


Autoimmune Diseases , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Autoimmune Diseases/genetics , Promoter Regions, Genetic/genetics , Aminopeptidases/genetics
3.
Arthritis Rheumatol ; 76(1): 119-129, 2024 01.
Article En | MEDLINE | ID: mdl-37471469

OBJECTIVE: Human leukocyte antigen (HLA)-DRB1*15:01 has been recently associated with interstitial lung disease (LD), eosinophilia, and drug reactions in systemic juvenile idiopathic arthritis (sJIA). Additionally, genetic variants in IL1RN have been linked to poor response to anakinra. We sought to reproduce these findings in a prospective cohort study of patients with new-onset sJIA treated with anakinra as first-line therapy. METHODS: HLA and IL1RN risk alleles were identified via whole-genome sequencing. Treatment responses and complications were compared between carriers versus noncarriers. RESULTS: Seventeen of 65 patients (26%) carried HLA-DRB1*15:01, comparable with the general population, and there was enrichment for HLA-DRB1*11:01, a known risk locus for sJIA. The rates of clinical inactive disease (CID) at 6 months, 1 year, and 2 years were generally high, irrespective of HLA-DRB1 or IL1RN variants, but significantly lower in carriers of an HLA-DRB1*11:01 allele. One patient, an HLA-DRB1*15:01 carrier, developed sJIA-LD. Of the three patients with severe drug reactions to biologics, one carried HLA-DRB1*15:01. The prevalence of eosinophilia did not significantly differ between HLA-DRB1*15:01 carriers and noncarriers at disease onset (6.2% vs 14.9%, P = 0.67) nor after the start of anakinra (35.3% vs 37.5% in the first 2 years of disease). CONCLUSION: We observed high rates of CID using anakinra as first-line treatment irrespective of HLA-DRB1 or IL1RN variants. Only one of the 17 HLA-DRB1*15:01 carriers developed sJIA-LD, and of the three patients with drug reactions to biologics, only one carried HLA-DRB1*15:01. Although thorough monitoring for the development of drug hypersensitivity and refractory disease courses in sJIA, including sJIA-LD, remains important, our data support the early start of biologic therapy in patients with new-onset sJIA irrespective of HLA-DRB1 background or IL1RN variants.


Arthritis, Juvenile , Biological Products , Eosinophilia , Humans , Arthritis, Juvenile/drug therapy , Arthritis, Juvenile/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/therapeutic use , HLA-DRB1 Chains/genetics , Prospective Studies , Biological Products/therapeutic use , Eosinophilia/drug therapy , Receptors, Interleukin-1/therapeutic use
4.
Biology (Basel) ; 12(7)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37508433

T cell activation is a highly regulated process, modulated via the expression of various immune regulatory proteins including cytokines, surface receptors and co-stimulatory proteins. N6-methyladenosine (m6A) is an RNA modification that can directly regulate RNA expression levels and it is associated with various biological processes. However, the function of m6A in T cell activation remains incompletely understood. We identify m6A as a novel regulator of the expression of the CD40 ligand (CD40L) in human CD4+ lymphocytes. Manipulation of the m6A 'eraser' fat mass and obesity-associated protein (FTO) and m6A 'writer' protein methyltransferase-like 3 (METTL3) directly affects the expression of CD40L. The m6A 'reader' protein YT521-B homology domain family-2 (YTHDF2) is hypothesized to be able to recognize and bind m6A specific sequences on the CD40L mRNA and promotes its degradation. This study demonstrates that CD40L expression in human primary CD4+ T lymphocytes is regulated via m6A modifications, elucidating a new regulatory mechanism in CD4+ T cell activation that could possibly be leveraged in the future to modulate T cell responses in patients with immune-related diseases.

5.
Cell Rep ; 42(6): 112583, 2023 06 27.
Article En | MEDLINE | ID: mdl-37267106

Upon antigen-specific T cell receptor (TCR) engagement, human CD4+ T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4+ T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation.


Chromatin Assembly and Disassembly , Histones , Humans , Histones/metabolism , Acetyl Coenzyme A/metabolism , CD4-Positive T-Lymphocytes/metabolism
6.
Rheumatology (Oxford) ; 62(8): 2887-2897, 2023 08 01.
Article En | MEDLINE | ID: mdl-36625523

OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases.


Arthritis , Monocytes , Humans , Monocytes/metabolism , Epigenesis, Genetic , Arthritis/metabolism , Synovial Fluid/metabolism , Phenotype
7.
Antioxidants (Basel) ; 11(12)2022 Dec 08.
Article En | MEDLINE | ID: mdl-36552634

BACKGROUND: CD4+ T cells critically contribute to the initiation and perturbation of inflammation. When CD4+ T cells enter inflamed tissues, they adapt to hypoxia and oxidative stress conditions, and to a reduction in nutrients. We aimed to investigate how this distinct environment regulates T cell responses within the inflamed joints of patients with childhood rheumatism (JIA) by analyzing the behavior of NRF2-the key regulator of the anti-oxidative stress response-and its signaling pathways. METHODS: Flow cytometry and quantitative RT-PCR were used to perform metabolic profiling of T cells and to measure the production of inflammatory cytokines. Loss of function analyses were carried out by means of siRNA transfection experiments. NRF2 activation was induced by treatment with 4-octyl-Itaconate (4-OI). RESULTS: Flow cytometry analyses revealed a high metabolic status in CD4+ T cells taken from synovial fluid (SF) with greater mitochondrial mass, and increased glucose and fatty acid uptake. This resulted in a heightened oxidative status of SF CD4+ T cells. Despite raised ROS levels, expression of NRF2 and its target gene NQO1 were lower in CD4+ T cells from SF than in those from blood. Indeed, NRF2 activation of CD4+ T cells downregulated oxidative stress markers, altered the metabolic phenotype and reduced secretion of IFN-γ. CONCLUSION: NRF2 could be a potential regulator in CD4+ T cells during chronic inflammation and could instigate a drift toward disease progression or regression, depending on the inflammatory environment.

8.
Clin Transl Immunology ; 11(10): e1420, 2022.
Article En | MEDLINE | ID: mdl-36204213

Objective: Tregs are crucial for immune regulation, and environment-driven adaptation of effector (e)Tregs is essential for local functioning. However, the extent of human Treg heterogeneity in inflammatory settings is unclear. Methods: We combined single-cell RNA- and TCR-sequencing on Tregs derived from three to six patients with juvenile idiopathic arthritis (JIA) to investigate the functional heterogeneity of human synovial fluid (SF)-derived Tregs from inflamed joints. Confirmation and suppressive function of the identified Treg clusters was assessed by flow cytometry. Results: Four Treg clusters were identified; incoming, activated eTregs with either a dominant suppressive or cytotoxic profile, and GPR56+CD161+CXCL13+ Tregs. Pseudotime analysis showed differentiation towards either classical eTreg profiles or GPR56+CD161+CXCL13+ Tregs supported by TCR data. Despite its most differentiated phenotype, GPR56+CD161+CXCL13+ Tregs were shown to be suppressive. Furthermore, BATF was identified as an overarching eTreg regulator, with the novel Treg-associated regulon BHLHE40 driving differentiation towards GPR56+CD161+CXCL13+ Tregs, and JAZF1 towards classical eTregs. Conclusion: Our study reveals a heterogeneous population of Tregs at the site of inflammation in JIA. SF Treg differentiate to a classical eTreg profile with a more dominant suppressive or cytotoxic profile that share a similar TCR repertoire, or towards GPR56+CD161+CXCL13+ Tregs with a more distinct TCR repertoire. Genes characterising GPR56+CD161+CXCL13+ Tregs were also mirrored in other T-cell subsets in both the tumor and the autoimmune setting. Finally, the identified key regulators driving SF Treg adaptation may be interesting targets for autoimmunity or tumor interventions.

9.
J Invest Dermatol ; 142(2): 402-413, 2022 02.
Article En | MEDLINE | ID: mdl-34333017

Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of psoriasis. However, how dermal fibroblasts specifically contribute to psoriasis development remains largely uncharacterized. In this study, we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional psoriatic skin are important producers of inflammatory mediators, including IL-6, CXCL8, and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1, and ZFP36L2, RNA-binding proteins with mRNA-degrading properties. In addition, the expression of ZFP36 family proteins was found to be reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin and that reduced expression of ZFP36 members in psoriasis dermal fibroblasts contributes to their inflammatory phenotype.


Butyrate Response Factor 1/metabolism , Fibroblasts/metabolism , Psoriasis/immunology , Transcription Factors/metabolism , Tristetraprolin/metabolism , Biopsy , Butyrate Response Factor 1/genetics , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gene Knockdown Techniques , Healthy Volunteers , Humans , Inflammation Mediators/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Psoriasis/pathology , Transcription Factors/genetics , Tristetraprolin/genetics
10.
Front Immunol ; 13: 1101999, 2022.
Article En | MEDLINE | ID: mdl-36685500

Introduction: Dendritic cells (DC) are crucial for initiating and shaping immune responses. So far, little is known about the functional specialization of human DC subsets in (local) inflammatory conditions. We profiled conventional (c)DC1, cDC2 and monocytes based on phenotype, transcriptome and function from a local inflammatory site, namely synovial fluid (SF) from patients suffering from a chronic inflammatory condition, Juvenile Idiopathic Arthritis (JIA) as well as patients with rheumatoid arthritis (RA). Methods: Paired PB and SF samples from 32 JIA and 4 RA patients were collected for mononuclear cell isolation. Flow cytometry was done for definition of antigen presenting cell (APC) subsets. Cell sorting was done on the FACSAria II or III. RNA sequencing was done on SF APC subsets. Proliferation assays were done on co-cultures after CD3 magnetic activated cell sorting (MACS). APC Toll-like receptor (TLR) stimulation was done using Pam3CSK4, Poly(I:C), LPS, CpG-A and R848. Cytokine production was measured by Luminex. Results: cDC1, a relatively small DC subset in blood, are strongly enriched in SF, and showed a quiescent immune signature without a clear inflammatory profile, low expression of pathogen recognition receptors (PRRs), chemokine and cytokine receptors, and poor induction of T cell proliferation and cytokine production, but selective production of IFNλ upon polyinosinic:polycytidylic acid exposure. In stark contrast, cDC2 and monocytes from the same environment, showed a pro-inflammatory transcriptional profile, high levels of (spontaneous) pro-inflammatory cytokine production, and strong induction of T cell proliferation and cytokine production, including IL-17. Although the cDC2 and monocytes showed an overlapping transcriptional core profile, there were clear differences in the transcriptional landscape and functional features, indicating that these cell types retain their lineage identity in chronic inflammatory conditions. Discussion: Our findings suggest that at the site of inflammation, there is specific functional programming of human DCs, especially cDC2. In contrast, the enriched cDC1 remain relatively quiescent and seemingly unchanged under inflammatory conditions, pointing to a potentially more regulatory role.


Arthritis, Juvenile , Arthritis, Rheumatoid , Humans , Synovial Fluid , Dendritic Cells , Cytokines/metabolism
11.
Nat Commun ; 12(1): 2710, 2021 05 11.
Article En | MEDLINE | ID: mdl-33976194

Treg cells are critical regulators of immune homeostasis, and environment-driven Treg cell differentiation into effector (e)Treg cells is crucial for optimal functioning. However, human Treg cell programming in inflammation is unclear. Here, we combine transcriptional and epigenetic profiling to identify a human eTreg cell signature. Inflammation-derived functional Treg cells have a transcriptional profile characterized by upregulation of both a core Treg cell (FOXP3, CTLA4, TIGIT) and effector program (GITR, BLIMP-1, BATF). We identify a specific human eTreg cell signature that includes the vitamin D receptor (VDR) as a predicted regulator in eTreg cell differentiation. H3K27ac/H3K4me1 occupancy indicates an altered (super-)enhancer landscape, including enrichment of the VDR and BATF binding motifs. The Treg cell profile has striking overlap with tumor-infiltrating Treg cells. Our data demonstrate that human inflammation-derived Treg cells acquire a conserved and specific eTreg cell profile guided by epigenetic changes, and fine-tuned by environment-specific adaptations.


Arthritis, Juvenile/genetics , Epigenesis, Genetic , Receptors, Calcitriol/genetics , T-Lymphocytes, Regulatory/immunology , Transcriptome , Adolescent , Arthritis, Juvenile/immunology , Arthritis, Juvenile/pathology , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Case-Control Studies , Cell Differentiation , Child , Child, Preschool , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Profiling , Gene Regulatory Networks , Glucocorticoid-Induced TNFR-Related Protein/genetics , Glucocorticoid-Induced TNFR-Related Protein/immunology , Histones/genetics , Histones/immunology , Humans , Joints/immunology , Joints/pathology , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , Primary Cell Culture , Receptors, Calcitriol/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/pathology , Young Adult
12.
Pediatr Rheumatol Online J ; 19(1): 52, 2021 Apr 07.
Article En | MEDLINE | ID: mdl-33827608

BACKGROUND: Involving the end-users of scientific research (patients, carers and clinicians) in setting research priorities is important to formulate research questions that truly make a difference and are in tune with the needs of patients. We therefore aimed to generate a national research agenda for Juvenile Idiopathic Arthritis (JIA) together with patients, their caregivers and healthcare professionals through conducting a nationwide survey among these stakeholders. METHODS: The James Lind Alliance method was used, tailored with additional focus groups held to involve younger patients. First, research questions were gathered through an online and hardcopy survey. The received questions that were in scope were summarised and a literature search was performed to verify that questions were unanswered. Questions were ranked in the interim survey, and the final top 10 was chosen during a prioritisation workshop. RESULTS: Two hundred and seventy-eight respondents submitted 604 questions, of which 519 were in scope. Of these 604 questions, 81 were generated in the focus groups with younger children. The questions were summarised into 53 summary questions. An evidence checking process verified that all questions were unanswered. A total of 303 respondents prioritised the questions in the interim survey. Focus groups with children generated a top 5 of their most important questions. Combining this top 5 with the top 10s of patients, carers, and clinicians led to a top 21. Out of these, the top 10 research priorities were chosen during a final workshop. Research into pain and fatigue, personalised treatment strategies and aetiology were ranked high in the Top 10. CONCLUSIONS: Through this study, the top 10 research priorities for JIA of patients, their caregivers and clinicians were identified to inform researchers and research funders of the research topics that matter most to them. The top priority involves the treatment and mechanisms behind persisting pain and fatigue when the disease is in remission.


Arthritis, Juvenile/therapy , Caregivers , Health Personnel , Adolescent , Adult , Child , Child, Preschool , Humans , Middle Aged , Netherlands , Self Report , Young Adult
13.
Cells ; 10(2)2021 02 16.
Article En | MEDLINE | ID: mdl-33669367

Chronic inflammatory diseases such as rheumatoid arthritis (RA), Juvenile Idiopathic Arthritis (JIA), psoriasis, and inflammatory bowel disease (IBD) are characterized by systemic as well as local tissue inflammation, often with a relapsing-remitting course. Tissue-resident memory T cells (TRM) enter non-lymphoid tissue (NLT) as part of the anamnestic immune response, especially in barrier tissues, and have been proposed to fuel chronic inflammation. TRM display a distinct gene expression profile, including upregulation of CD69 and downregulation of CD62L, CCR7, and S1PR1. However, not all TRM are consistent with this profile, and it is now more evident that the TRM compartment comprises a heterogeneous population, with differences in their function and activation state. Interestingly, the paradigm of TRM remaining resident in NLT has also been challenged. T cells with TRM characteristics were identified in both lymph and circulation in murine and human studies, displaying similarities with circulating memory T cells. This suggests that re-activated TRM are capable of retrograde migration from NLT via differential gene expression, mediating tissue egress and circulation. Circulating 'ex-TRM' retain a propensity for return to NLT, especially to their tissue of origin. Additionally, memory T cells with TRM characteristics have been identified in blood from patients with chronic inflammatory disease, leading to the hypothesis that TRM egress from inflamed tissue as well. The presence of TRM in both tissue and circulation has important implications for the development of novel therapies targeting chronic inflammation, and circulating 'ex-TRM' may provide a vital diagnostic tool in the form of biomarkers. This review elaborates on the recent developments in the field of TRM in the context of chronic inflammatory diseases.


CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Animals , Antigens, CD/metabolism , Biomarkers/analysis , Humans
14.
Elife ; 92020 12 21.
Article En | MEDLINE | ID: mdl-33346730

When a T cell and an antigen-presenting cell form an immunological synapse, rapid dynein-driven translocation of the centrosome toward the contact site leads to reorganization of microtubules and associated organelles. Currently, little is known about how the regulation of microtubule dynamics contributes to this process. Here, we show that the knockout of KIF21B, a kinesin-4 linked to autoimmune disorders, causes microtubule overgrowth and perturbs centrosome translocation. KIF21B restricts microtubule length by inducing microtubule pausing typically followed by catastrophe. Catastrophe induction with vinblastine prevented microtubule overgrowth and was sufficient to rescue centrosome polarization in KIF21B-knockout cells. Biophysical simulations showed that a relatively small number of KIF21B molecules can restrict mirotubule length and promote an imbalance of dynein-mediated pulling forces that allows the centrosome to translocate past the nucleus. We conclude that proper control of microtubule length is important for allowing rapid remodeling of the cytoskeleton and efficient T cell polarization.


The immune system is composed of many types of cells that can recognize foreign molecules and pathogens so they can eliminate them. When cells in the body become infected with a pathogen, they can process the pathogen's proteins and present them on their own surface. Specialized immune cells can then recognize infected cells and interact with them, forming an 'immunological synapse'. These synapses play an important role in immune response: they activate the immune system and allow it to kill harmful cells. To form an immunological synapse, an immune cell must reorganize its internal contents, including an aster-shaped scaffold made of tiny protein tubes called microtubules. The center of this scaffold moves towards the immunological synapse as it forms. This re-orientation of the microtubules towards the immunological synapse is known as 'polarization' and it happens very rapidly, but it is not yet clear how it works. One molecule involved in the polarization process is called KIF21B, a protein that can walk along microtubules, building up at the ends and affecting their growth. Whether KIF21B makes microtubules grow more quickly, or more slowly, is a matter of debate, and the impact microtubule length has on immunological synapse formation is unknown. Here, Hooikaas, Damstra et al. deleted the gene for KIF21B from human immune cells called T cells to find out how it affected their ability to form an immunological synapse. Without KIF21B, the T cells grew microtubules that were longer than normal, and had trouble forming immunological synapses. When the T cells were treated with a drug that stops microtubule growth, their ability to form immunological synapses was restored, suggesting a role for KIF21B. To explore this further, Hooikaas, Damstra et al. replaced the missing KIF21B gene with a gene that coded for a version of the protein that could be seen using microscopy. This revealed that, when KIF21B reaches the ends of microtubules, it stops their growth and triggers their disassembly. Computational modelling showed that cells find it hard to reorient their microtubule scaffolding when the individual tubes are too long. It only takes a small number of KIF21B molecules to shorten the microtubules enough to allow the center of the scaffold to move. Research has linked the KIF21B gene to autoimmune conditions like multiple sclerosis. Microtubules also play an important role in cell division, a critical process driving all types of cancer. Drugs that affect microtubule growth are already available, and a deeper understanding of KIF21B and microtubule regulation in immune cells could help to improve treatments in the future.


Centrosome/metabolism , Kinesins/metabolism , Microtubules/metabolism , T-Lymphocytes/immunology , Actins/metabolism , Antigen-Presenting Cells/immunology , Cytoskeleton/metabolism , Humans , Immunological Synapses/metabolism , Lymphocyte Activation
15.
Arthritis Rheumatol ; 71(7): 1163-1173, 2019 07.
Article En | MEDLINE | ID: mdl-30848528

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is a multifactorial autoinflammatory disease with a historically poor prognosis. With current treatment regimens, approximately half of patients still experience active disease after 1 year of therapy. This study was undertaken to evaluate a treat-to-target approach using recombinant interleukin-1 receptor antagonist (rIL-1Ra; anakinra) as first-line monotherapy to achieve early inactive disease and prevent damage. METHODS: In this single-center, prospective study, patients with new-onset systemic JIA with an unsatisfactory response to nonsteroidal antiinflammatory drugs received rIL-1Ra monotherapy according to a treat-to-target strategy. Patients with an incomplete response to 2 mg/kg rIL-1Ra subsequently received 4 mg/kg rIL-1Ra or additional prednisolone, or switched to alternative therapy. For patients in whom inactive disease was achieved, rIL-1Ra was tapered after 3 months and subsequently stopped. RESULTS: Forty-two patients, including 12 who had no arthritis at disease onset, were followed up for a median of 5.8 years. The median time to achieve inactive disease was 33 days. At 1 year, 76% had inactive disease, and 52% had inactive disease while not receiving medication. High neutrophil counts at baseline and a complete response after 1 month of rIL-1Ra were highly associated with inactive disease at 1 year. After 5 years of follow-up, 96% of the patients included had inactive disease, and 75% had inactive disease while not receiving medication. Articular or extraarticular damage was reported in <5%, and only 33% of the patients received glucocorticoids. Treatment with rIL-1Ra was equally effective in systemic JIA patients without arthritis at disease onset. CONCLUSION: Treatment to target, starting with first-line, short-course monotherapy with rIL-1Ra, is a highly efficacious strategy to induce and sustain inactive disease and to prevent disease- and glucocorticoid-related damage in systemic JIA.


Antirheumatic Agents/therapeutic use , Arthritis, Juvenile/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Child , Child, Preschool , Drug Substitution , Etanercept/therapeutic use , Female , Follow-Up Studies , Glucocorticoids/therapeutic use , Humans , Leukocyte Count , Male , Methotrexate/therapeutic use , Neutrophils , Prednisolone/therapeutic use , Prognosis , Prospective Studies , Severity of Illness Index , Treatment Outcome
16.
Front Immunol ; 10: 151, 2019.
Article En | MEDLINE | ID: mdl-30792714

Juvenile Idiopathic Arthritis (JIA) is characterized by a loss of immune tolerance. Here, the balance between the activity of effector T (Teff) cells and regulatory T (Treg) cells is disturbed resulting in chronic inflammation in the joints. Presently, therapeutic strategies are predominantly aimed at suppressing immune activation and pro-inflammatory effector mechanisms, ignoring the opportunity to also promote tolerance by boosting the regulatory side of the immune balance. Histone deacetylases (HDACs) can deacetylate both histone and non-histone proteins and have been demonstrated to modulate epigenetic regulation as well as cellular signaling in various cell types. Importantly, HDACs are potent regulators of both Teff cell and Treg cell function and can thus be regarded as attractive therapeutic targets in chronic inflammatory arthritis. HDAC inhibitors (HDACi) have proven therapeutic potential in the cancer field, and are presently being explored for their potential in the treatment of autoimmune diseases. Specific HDACi have already been demonstrated to reduce the secretion of pro-inflammatory cytokines by Teff cells, and promote Treg numbers and suppressive capacity in vitro and in vivo. In this review, we outline the role of the different classes of HDACs in both Teff cell and Treg cell function. Furthermore, we will review the effect of different HDACi on T cell tolerance and explore their potential as a therapeutic strategy for the treatment of oligoarticular and polyarticular JIA.


Arthritis, Juvenile/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , T-Lymphocytes/immunology , Acetylation , Animals , Arthritis, Juvenile/immunology , Chronic Disease , Histones/immunology , Humans , Immune Tolerance , Inflammation/drug therapy
17.
J Immunol ; 201(8): 2193-2200, 2018 10 15.
Article En | MEDLINE | ID: mdl-30301837

T cell factor, the effector transcription factor of the WNT signaling pathway, was so named because of the primary observation that it is indispensable for T cell development in the thymus. Since this discovery, the role of this signaling pathway has been extensively studied in T cell development, hematopoiesis, and stem cells; however, its functional role in mature T cells has remained relatively underinvestigated. Over the last few years, various studies have demonstrated that T cell factor can directly influence T cell function and the differentiation of Th1, Th2, Th17, regulatory T cell, follicular helper CD4+ T cell subsets, and CD8+ memory T cells. In this paper, we discuss the molecular mechanisms underlying these observations and place them in the general context of immune responses. Furthermore, we explore the implications and limitations of these findings for WNT manipulation as a therapeutic approach for treating immune-related diseases.


T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Wnt Signaling Pathway/immunology , Animals , Cell Differentiation , Cytokines/metabolism , Humans , Immunologic Memory , Lymphocyte Activation , TCF Transcription Factors/metabolism
18.
Pediatr Rheumatol Online J ; 16(1): 57, 2018 Sep 15.
Article En | MEDLINE | ID: mdl-30219072

BACKGROUND: Research on Juvenile Idiopathic Arthritis (JIA) should support patients, caregivers/parents (carers) and clinicians to make important decisions in the consulting room and eventually to improve the lives of patients with JIA. Thus far these end-users of JIA-research have rarely been involved in the prioritisation of future research. MAIN BODY: Dutch organisations of patients, carers and clinicians will collaboratively develop a research agenda for JIA, following the James Lind Alliance (JLA) methodology. In a 'Priority Setting Partnership' (PSP), they will gradually establish a top 10 list of the most important unanswered research questions for JIA. In this process the input from clinicians, patients and their carers will be equally valued. Additionally, focus groups will be organised to involve young people with JIA. The involvement of all contributors will be monitored and evaluated. In this manner, the project will contribute to the growing body of literature on how to involve young people in agenda setting in a meaningful way. CONCLUSION: A JIA research agenda established through the JLA method and thus co-created by patients, carers and clinicians will inform researchers and research funders about the most important research questions for JIA. This will lead to research that really matters.


Arthritis, Juvenile/therapy , Biomedical Research/methods , Patient Participation/methods , Adolescent , Biomedical Research/organization & administration , Caregivers , Child , Cooperative Behavior , Decision Making , Focus Groups , Humans , Netherlands , Physicians , Research Design
19.
J Autoimmun ; 94: 90-98, 2018 11.
Article En | MEDLINE | ID: mdl-30077426

T-cell resilience is critical to the immune pathogenesis of human autoimmune arthritis. Autophagy is essential for memory T cell generation and associated with pathogenesis in rheumatoid arthritis (RA). Our aim here was to delineate the role and molecular mechanism of autophagy in resilience and persistence of pathogenic T cells from autoimmune arthritis. We demonstrated "Autophagic memory" as elevated autophagy levels in CD4+ memory T cells compared to CD4+ naive T cells and in Jurkat Human T cell line trained with starvation stress. We then showed increased levels of autophagy in pathogenic CD4+ T cells subsets from autoimmune arthritis patients. Using RNA-sequencing, transcription factor gene regulatory network and methylation analyses we identified MYC as a key regulator of autophagic memory. We validated MYC levels using qPCR and further demonstrated that inhibiting MYC increased autophagy. The present study proposes the novel concept of autophagic memory and suggests that autophagic memory confers metabolic advantage to pathogenic T cells from arthritis and supports its resilience and long term survival. Particularly, suppression of MYC imparted the heightened autophagy levels in pathogenic T cells. These studies have a direct translational valency as they identify autophagy and its metabolic controllers as a novel therapeutic target.


Arthritis, Juvenile/immunology , Arthritis, Rheumatoid/immunology , Autophagy/immunology , Gene Regulatory Networks/immunology , Immunologic Memory , Proto-Oncogene Proteins c-myc/genetics , Adolescent , Adult , Animals , Arthritis, Juvenile/genetics , Arthritis, Juvenile/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Autophagy/genetics , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Case-Control Studies , DNA Methylation , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Jurkat Cells , Male , Mice , Mice, Inbred DBA , Oxadiazoles/pharmacology , Primary Cell Culture , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Transcription Factors/classification , Transcription Factors/genetics , Transcription Factors/immunology
20.
Arthritis Rheumatol ; 70(6): 943-956, 2018 06.
Article En | MEDLINE | ID: mdl-29426067

OBJECTIVE: Neutrophils are the most abundant innate immune cells in the blood, but little is known about their role in (acquired) chronic autoinflammatory diseases. This study was undertaken to investigate the role of neutrophils in systemic-onset juvenile idiopathic arthritis (JIA), a prototypical multifactorial autoinflammatory disease that is characterized by arthritis and severe systemic inflammation. METHODS: Fifty patients with systemic-onset JIA who were receiving treatment with recombinant interleukin-1 receptor antagonist (rIL-1Ra; anakinra) were analyzed at disease onset and during remission. RNA sequencing was performed on fluorescence-activated cell-sorted neutrophils from 3 patients with active systemic-onset JIA and 3 healthy controls. Expression of activation markers, apoptosis, production of reactive oxygen species (ROS), and degranulation of secretory vesicles from neutrophils were assessed by flow cytometry in serum samples from 17 patients with systemic-onset JIA and 15 healthy controls. RESULTS: Neutrophil counts were markedly increased at disease onset, and this correlated with the levels of inflammatory mediators. The neutrophil counts normalized within days after the initiation of rIL-1Ra therapy. RNA-sequencing analysis revealed a substantial up-regulation of inflammatory processes in neutrophils from patients with active systemic-onset JIA, significantly overlapping with the transcriptome of sepsis. Correspondingly, neutrophils from patients with active systemic-onset JIA displayed a primed phenotype that was characterized by increased ROS production, CD62L shedding, and secretory vesicle degranulation, which was reversed by rIL-1Ra treatment in patients who had achieved clinical remission. Patients with a short disease duration had high neutrophil counts, more immature neutrophils, and a complete response to rIL-1Ra, whereas patients with symptoms for >1 month had normal neutrophil counts and an unsatisfactory response to rIL-1Ra. In vitro, rIL-1Ra antagonized the priming effect of IL-1ß on neutrophils from healthy subjects. CONCLUSION: These results strongly support the notion that neutrophils play an important role in systemic-onset JIA, especially in the early inflammatory phase of the disease. The findings also demonstrate that neutrophil numbers and the inflammatory activity of systemic-onset JIA are both susceptible to IL-1 blockade.


Antirheumatic Agents/therapeutic use , Arthritis, Juvenile/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neutrophils/drug effects , Systemic Inflammatory Response Syndrome/drug therapy , Arthritis, Juvenile/immunology , Child , Female , Humans , Male , Netherlands , Prospective Studies , Systemic Inflammatory Response Syndrome/immunology , Treatment Outcome
...