Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nucleic Acids Res ; 52(17): 10144-10160, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175109

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.


Asunto(s)
Epistasis Genética , Polimorfismo de Nucleótido Simple , Humanos , Teoría Cuántica , Herencia Multifactorial/genética , Enfermedad/genética , Biología Computacional/métodos , Algoritmos , Predisposición Genética a la Enfermedad
2.
Sci Rep ; 14(1): 18243, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107347

RESUMEN

Individual Specific Networks (ISNs) are a tool used in computational biology to infer Individual Specific relationships between biological entities from omics data. ISNs provide insights into how the interactions among these entities affect their respective functions. To address the scarcity of solutions for efficiently computing ISNs on large biological datasets, we present ISN-tractor, a data-agnostic, highly optimized Python library to build and analyse ISNs. ISN-tractor demonstrates superior scalability and efficiency in generating Individual Specific Networks (ISNs) when compared to existing methods such as LionessR, both in terms of time and memory usage, allowing ISNs to be used on large datasets. We show how ISN-tractor can be applied to real-life datasets, including The Cancer Genome Atlas (TCGA) and HapMap, showcasing its versatility. ISN-tractor can be used to build ISNs from various -omics data types, including transcriptomics, proteomics, and genotype arrays, and can detect distinct patterns of gene interactions within and across cancer types. We also show how Filtration Curves provided valuable insights into ISN characteristics, revealing topological distinctions among individuals with different clinical outcomes. Additionally, ISN-tractor can effectively cluster populations based on genetic relationships, as demonstrated with Principal Component Analysis on HapMap data.


Asunto(s)
Biología Computacional , Humanos , Biología Computacional/métodos , Redes Reguladoras de Genes , Neoplasias/genética , Programas Informáticos , Proteómica/métodos , Algoritmos
3.
Front Med (Lausanne) ; 11: 1348148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854671

RESUMEN

Introduction: In the evolving healthcare landscape, precision medicine's rise necessitates adaptable doctoral training. The European Union has recognized this and promotes the development of international, training-focused programmes called Innovative Training Networks (ITNs). In this article, we introduce TranSYS, an ITN focused on educating the next generation of precision medicine researchers. In an ambition to go beyond describing the consortium goals, our article explores two key aspects of ITNs: the training and collaboration. Methods: Using self-report questionnaires, we evaluate the scientific, professional, and personal growth of ESRs over the duration of the ITN and investigate whether this can be linked to network activities. Results: Our quantitative analysis approach reveals substantial improvements in scientific, professional, and social skills among young researchers facilitated by the engagement in this interdisciplinary network. We provide case studies underlining the advantages of collaborative environments, featuring innovative scientific exchange within TranSYS. Discussion: While challenging, ITNs foster positive growth in young researchers, yet exhibit weaknesses such as balancing stakeholder interests and partner commitment. We believe this study may benefit a variety of stakeholders, from prospective ITN creators to industry partners, to design better sustainable training networks going forward.

4.
Am J Med Genet A ; 194(7): e63584, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450933

RESUMEN

Debates about the prospective clinical use of polygenic risk scores (PRS) have grown considerably in the last years. The potential benefits of PRS to improve patient care at individual and population levels have been extensively underlined. Nonetheless, the use of PRS in clinical contexts presents a number of unresolved ethical challenges and consequent normative gaps that hinder their optimal implementation. Here, we conducted a systematic review of reasons of the normative literature discussing ethical issues and moral arguments related to the use of PRS for the prevention and treatment of common complex diseases. In total, we have included and analyzed 34 records, spanning from 2013 to 2023. The findings have been organized in three major themes: in the first theme, we consider the potential harms of PRS to individuals and their kin. In the theme "Threats to health equity," we consider ethical concerns of social relevance, with a focus on justice issues. Finally, the theme "Towards best practices" collects a series of research priorities and provisional recommendations to be considered for an optimal clinical translation of PRS. We conclude that the use of PRS in clinical care reinvigorates old debates in matters of health justice; however, open questions, regarding best practices in clinical counseling, suggest that the ethical considerations applicable in monogenic settings will not be sufficient to face PRS emerging challenges.


Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Principios Morales , Pruebas Genéticas/ética , Medición de Riesgo , Asesoramiento Genético/ética , Factores de Riesgo , Puntuación de Riesgo Genético
5.
Cancer Med ; 13(3): e6860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38366800

RESUMEN

The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Incidencia , Índice de Masa Corporal , Inflamación/epidemiología , Células Sanguíneas
6.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38400120

RESUMEN

The seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine. The group of exemplary vaccine responders differentially expressed 16 genes, namely: MZB1, MYDGF, TXNDC5, TXNDC11, HSP90B1, FKBP11, PDIA5, PRDX4, CD38, SDC1, TNFRSF17, TNFRSF13B, PAX5, POU2AF1, IRF4, and XBP1. Our findings point out a list of expressed proteins that are related to B cell proliferation, unfolded protein response, and cellular haemostasis, as well as a linkage of these expressions to the survival of long-lived plasma cells.

7.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38076997

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

8.
Front Genet ; 14: 1286800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125750

RESUMEN

Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

9.
Front Genet ; 14: 1274637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928248

RESUMEN

Molecular profiling technologies, such as RNA sequencing, offer new opportunities to better discover and understand the molecular networks involved in complex biological processes. Clinically important variations of diseases, or responses to treatment, are often reflected, or even caused, by the dysregulation of molecular interaction networks specific to particular network regions. In this work, we propose the R package PLEX.I, that allows quantifying and testing variation in the direct neighborhood of a given node between networks corresponding to different conditions or states. We illustrate PLEX.I in two applications in which we discover variation that is associated with different responses to tamoxifen treatment and to sex-specific responses to bacterial stimuli. In the first case, PLEX.I analysis identifies two known pathways i) that have already been implicated in the same context as the tamoxifen mechanism of action, and ii) that would have not have been identified using classical differential gene expression analysis.

10.
Sci Rep ; 13(1): 19653, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949935

RESUMEN

Personalised cancer screening before therapy paves the way toward improving diagnostic accuracy and treatment outcomes. Most approaches are limited to a single data type and do not consider interactions between features, leaving aside the complementary insights that multimodality and systems biology can provide. In this project, we demonstrate the use of graph theory for data integration via individual networks where nodes and edges are individual-specific. We showcase the consequences of early, intermediate, and late graph-based fusion of RNA-Seq data and histopathology whole-slide images for predicting cancer subtypes and severity. The methodology developed is as follows: (1) we create individual networks; (2) we compute the similarity between individuals from these graphs; (3) we train our model on the similarity matrices; (4) we evaluate the performance using the macro F1 score. Pros and cons of elements of the pipeline are evaluated on publicly available real-life datasets. We find that graph-based methods can increase performance over methods that do not study interactions. Additionally, merging multiple data sources often improves classification compared to models based on single data, especially through intermediate fusion. The proposed workflow can easily be adapted to other disease contexts to accelerate and enhance personalized healthcare.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Instituciones de Salud , Imagen Multimodal , RNA-Seq , Registros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA