Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 131
1.
Hemasphere ; 8(3): e51, 2024 Mar.
Article En | MEDLINE | ID: mdl-38463444

T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.

2.
Blood Adv ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536906

TET2-mediated DNA demethylation plays a pivotal role in regulating pre-leukemic clonal expansion in acute myeloid leukemia (AML), where TET2 mutations are also linked to AML progression. However, its function in other types of leukemias, including T-cell acute lymphoblastic leukemia (T-ALL), remains unclear. Here, we used two different T-ALL mouse models to study the possible tumor suppressor role of Tet2 in pre-leukemic T-ALL. Overexpression of Tet2 resulted in a mild but significant increase in T-ALL latency in the immature CD2-Lmo2tg T-ALL mouse model, but no effect on survival was observed in the mature Lck-Cretg/+ Ptenfl/lf T-ALL mouse model. In contrast to the pre-leukemic thymocytes from CD2-Lmo2tg mice, Lck-Cretg/+ Ptenfl/fl thymi do not display self-renewal suggesting that the anti-leukemic effect of Tet2 occurs mainly in the pre-leukemic phase of T-ALL. In conclusion, we demonstrated that the Tet2 tumor suppressor function is dependent on the differentiation stage of T-ALL and limited to the pre-leukemic phase.

3.
iScience ; 27(1): 108571, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38161423

DHX15 has been implicated in RNA splicing and ribosome biogenesis, primarily functioning as an RNA helicase. To systematically assess the cellular role of DHX15, we conducted proteomic analysis to investigate the landscape of DHX15 interactome, and identified MYC as a binding partner. DHX15 co-localizes with MYC in cells and directly interacts with MYC in vitro. Importantly, DHX15 contributes to MYC protein stability at the post-translational level and independent of its RNA binding capacity. Mechanistic investigation reveals that DHX15 interferes the interaction between MYC and FBXW7, thereby preventing MYC polyubiquitylation and proteasomal degradation. Consequently, the abrogation of DHX15 drastically inhibits MYC-mediated transcriptional output. While DHX15 depletion blocks T cell development and leukemia cell survival as we recently reported, overexpression of MYC significantly rescues the phenotypic defects. These findings shed light on the essential role of DHX15 in mammalian cells and suggest that maintaining sufficient MYC expression is a significant contributor to DHX15-mediated cellular functions.

4.
Haematologica ; 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37941480

T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic lymphoma (T-LBL) are rare aggressive hematological malignancies. Current treatment consists of intensive chemotherapy, leading to 80% overall survival but are associated with severe toxic side effects. Furthermore, 10-20% of patients still die from relapsed or refractory disease providing a strong rationale for more specific, targeted therapeutic strategies with less toxicities. Here, we report a novel MYH9::PDGFRB fusion in a T-LBL patient and demonstrate that this fusion product is constitutively active and sufficient to drive oncogenic transformation in vitro and in vivo. Expanding our analysis more broadly across T-ALL, we found a T-ALL cell line and multiple patient derived xenograft models with PDGFRB hyperactivation in the absence of a fusion, with high PDGFRB expression in TLX3 and HOXA T-ALL molecular subtypes. To target this PDGFRB hyperactivation, we evaluated the therapeutic effects of a selective PDGFRB inhibitor, CP-673451, both in vitro and in vivo and demonstrated sensitivity if the receptor is hyperactivated. Altogether, our work reveals that hyperactivation of PDGFRB is an oncogenic driver in T-ALL/T-LBL and that screening T-ALL/TLBL patients for phosphorylated PDGFRB levels can serve as a biomarker for PDGFRB inhibition as a novel targeted therapeutic strategy in their treatment regimen.

5.
Leukemia ; 37(12): 2404-2413, 2023 12.
Article En | MEDLINE | ID: mdl-37794102

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.


Leukemia, Myeloid, Acute , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Histone Methyltransferases/genetics , Xenopus/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Mutation
6.
Nat Commun ; 14(1): 1267, 2023 03 07.
Article En | MEDLINE | ID: mdl-36882421

The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. Here, we identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.


Neuroblastoma , Humans , Child , Neuroblastoma/genetics , Transcription Factors/genetics , Chromatin , Cell Nucleus , Chromosome Aberrations , Adrenergic Agents , DNA Helicases , Nuclear Proteins/genetics , SOXC Transcription Factors/genetics , Histone Demethylases
7.
Haematologica ; 108(8): 2029-2043, 2023 08 01.
Article En | MEDLINE | ID: mdl-36861414

RNA-binding proteins (RBP) have emerged as essential regulators that control gene expression and modulate multiple cancer traits. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from transformation of T-cell progenitors that normally undergo discrete steps of differentiation in the thymus. The implications of essential RBP during T-cell neoplastic transformation remain largely unclear. Systematic evaluation of RBP identifies RNA helicase DHX15, which facilitates the disassembly of the spliceosome and release of lariat introns, as a T-ALL dependency factor. Functional analysis using multiple murine T-ALL models demonstrates the essential importance of DHX15 in tumor cell survival and leukemogenesis. Moreover, single-cell transcriptomics reveals that DHX15 depletion in T-cell progenitors hinders burst proliferation during the transition from doublenegative to double-positive cells (CD4-CD8- to CD4+CD8+). Mechanistically, abrogation of DHX15 perturbs RNA splicing and leads to diminished levels of SLC7A6 and SLC38A5 transcripts due to intron retention, thereby suppressing glutamine import and mTORC1 activity. We further propose a DHX15 signature modulator drug ciclopirox and demonstrate that it has prominent anti-T-ALL efficacy. Collectively, our data highlight the functional contribution of DHX15 to leukemogenesis through regulation of established oncogenic pathways. These findings also suggest a promising therapeutic approach, i.e., splicing perturbation by targeting spliceosome disassembly, may achieve considerable anti-tumor efficacy.


Leukemia , RNA Helicases , Humans , Animals , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Splicing , Spliceosomes/genetics , Leukemia/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism
8.
Cancers (Basel) ; 15(3)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36765607

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

9.
Exp Hematol Oncol ; 12(1): 12, 2023 Jan 21.
Article En | MEDLINE | ID: mdl-36681829

Circular RNAs (circRNAs) are emerging as new players in leukemogenic mechanisms. In patients with T-cell Acute Lymphoblastic Leukemia (T-ALL), the recent report of a remarkable dysregulation of circRNAs incited further functional investigation. Here we focus on circFBXW7, highly expressed in T-cells, with a notably high abundance of the circular compared to linear transcript of FBXW7. Two T-ALL patient cohorts profiled with RNA-seq were analyzed in comparison with five populations of developing thymocytes as normal counterpart, quantifying circRNA and gene expression. CircFBXW7 expression was very heterogeneous in T-ALL patients allowing their stratification in two groups with low and high expression of this circRNA, not correlated with FBXW7 mutation status and T-ALL molecular subgroups. With a loss-of-function study in T-ALL in vitro, we demonstrate that circFBXW7 depletion increases leukemic cell viability and proliferation. Microarray profiling highlighted the effect of the circFBXW7 silencing on gene expression, with activation of pro-proliferative pathways, supporting a tumor suppressor role of circFBXW7 in T-ALL. Further, MYC and intracellular NOTCH1 protein levels, as well as expression of MYC target and NOTCH signaling genes were elevated after circFBXW7 depletion, suggesting an inhibitory role of circFBXW7 in these oncogenic axes. Plus, low circFBXW7 levels were associated with a particular gene expression profile in T-ALL patients, which was remarkably mirrored by the effects of circFBXW7 loss-of-function in vitro. CircFBXW7 depletion notably emerges as a new factor enhancing a proliferative phenotype and the activation of the MYC signaling pathway, key players in this aggressive malignancy.

10.
Nat Immunol ; 24(3): 474-486, 2023 03.
Article En | MEDLINE | ID: mdl-36703005

The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.


Dendritic Cells , Receptors, Tumor Necrosis Factor, Type II , Humans , Cell Differentiation , Cell Lineage , Interferon Regulatory Factors/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Thymus Gland/metabolism , Tumor Necrosis Factors/metabolism
11.
Haematologica ; 108(2): 409-419, 2023 02 01.
Article En | MEDLINE | ID: mdl-35979719

Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase. Acute lymphoblastic leukemia (ALL) cells do not express asparagine synthetase or express it only minimally, which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anticancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have very short half-lives in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long-lasting durable antileukemic effect between the standard-of-care pegylated-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase-related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.


Aspartate-Ammonia Ligase , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/pharmacology , Asparaginase/therapeutic use , Glutaminase/chemistry , Glutaminase/genetics , Glutaminase/metabolism , Asparagine , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Leukemia, Myeloid, Acute/drug therapy
12.
Front Immunol ; 13: 1038821, 2022.
Article En | MEDLINE | ID: mdl-36544762

Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that play an important role in the first line of defense against malignant or virus-infected cells. A better understanding of the transcriptional regulation of human NK cell differentiation is crucial to improve the efficacy of NK cell-mediated immunotherapy for cancer treatment. Here, we studied the role of the transcription factor interferon regulatory factor (IRF) 2 in human NK cell differentiation by stable knockdown or overexpression in cord blood hematopoietic stem cells and investigated its effect on development and function of the NK cell progeny. IRF2 overexpression had limited effects in these processes, indicating that endogenous IRF2 expression levels are sufficient. However, IRF2 knockdown greatly reduced the cell numbers of all early differentiation stages, resulting in decimated NK cell numbers. This was not caused by increased apoptosis, but by decreased proliferation. Expression of IRF2 is also required for functional maturation of NK cells, as the remaining NK cells after silencing of IRF2 had a less mature phenotype and showed decreased cytotoxic potential, as well as a greatly reduced cytokine secretion. Thus, IRF2 plays an important role during development and functional maturation of human NK cells.


Killer Cells, Natural , Transcription Factors , Humans , Killer Cells, Natural/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation/genetics , Cytokines/metabolism , Interferon Regulatory Factor-2/genetics , Interferon Regulatory Factor-2/metabolism
13.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Article En | MEDLINE | ID: mdl-36490346

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cell Line, Tumor , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/therapeutic use , Ubiquitin-Specific Peptidase 7/metabolism
14.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article En | MEDLINE | ID: mdl-36232644

The ability of natural killer (NK) cells to kill tumor cells without prior sensitization makes them a rising player in immunotherapy. Increased understanding of the development and functioning of NK cells will improve their clinical utilization. As opposed to murine NK cell development, human NK cell development is still less understood. Here, we studied the role of thioredoxin-interacting protein (TXNIP) in human NK cell differentiation by stable TXNIP knockdown or overexpression in cord blood hematopoietic stem cells, followed by in vitro NK cell differentiation. TXNIP overexpression only had marginal effects, indicating that endogenous TXNIP levels are sufficient in this process. TXNIP knockdown, however, reduced proliferation of early differentiation stages and greatly decreased NK cell numbers. Transcriptome analysis and experimental confirmation showed that reduced protein synthesis upon TXNIP knockdown likely caused this low proliferation. Contrary to its profound effects on the early differentiation stages, TXNIP knockdown led to limited alterations in NK cell phenotype, and it had no effect on NK cell cytotoxicity or cytokine production. Thus, TXNIP promotes human NK cell differentiation by affecting protein synthesis and proliferation of early NK cell differentiation stages, but it is redundant for functional NK cell maturation.


Killer Cells, Natural , Thioredoxins , Animals , Carrier Proteins/genetics , Cell Differentiation/genetics , Cytokines/metabolism , Gene Expression , Humans , Killer Cells, Natural/metabolism , Mice , Thioredoxins/genetics , Thioredoxins/metabolism
15.
Sci Data ; 9(1): 626, 2022 10 15.
Article En | MEDLINE | ID: mdl-36243775

The holistic nature of omics studies makes them ideally suited to generate hypotheses on health and disease. Sequencing-based genomics and mass spectrometry (MS)-based proteomics are linked through epigenetic regulation mechanisms. However, epigenomics is currently mainly focused on DNA methylation status using sequencing technologies, while studying histone posttranslational modifications (hPTMs) using MS is lagging, partly because reuse of raw data is impractical. Yet, targeting hPTMs using epidrugs is an established promising research avenue in cancer treatment. Therefore, we here present the most comprehensive MS-based preprocessed hPTM atlas to date, including 21 T-cell acute lymphoblastic leukemia (T-ALL) cell lines. We present the data in an intuitive and browsable single licensed Progenesis QIP project and provide all essential quality metrics, allowing users to assess the quality of the data, edit individual peptides, try novel annotation algorithms and export both peptide and protein data for downstream analyses, exemplified by the PeptidoformViz tool. This data resource sets the stage for generalizing MS-based histone analysis and provides the first reusable histone dataset for epidrug development.


Histones , Leukemia , Humans , Epigenesis, Genetic , Histones/metabolism , Mass Spectrometry/methods , Peptides/chemistry , Protein Processing, Post-Translational , T-Lymphocytes/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
16.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article En | MEDLINE | ID: mdl-36230482

Modeling human genetic diseases and cancer in lab animals has been greatly aided by the emergence of genetic engineering tools such as TALENs and CRISPR/Cas9. We have previously demonstrated the ease with which genetically engineered Xenopus models (GEXM) can be generated via injection of early embryos with Cas9 recombinant protein loaded with sgRNAs targeting single or multiple tumor suppressor genes. What has been lacking so far is the possibility to propagate and characterize the induced cancers via transplantation. Here, we describe the generation of a rag2 knockout line in Xenopus tropicalis that is deficient in functional T and B cells. This line was validated by means of allografting experiments with primary tp53-/- and apc+/-/tp53-/- donor tumors. In addition, we optimized available protocols for the sub-lethal irradiation of wild-type X. tropicalis froglets. Irradiated animals also allowed the stable, albeit transient, engraftment of transplanted X. tropicalis tumor cells. The novel rag2-/- line and the irradiated wild-type froglets will further expand the experimental toolbox in the diploid amphibian X. tropicalis and help to establish it as a versatile and relevant model for exploring human cancer.

17.
Genes Chromosomes Cancer ; 61(12): 720-733, 2022 12.
Article En | MEDLINE | ID: mdl-35778917

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.


MicroRNAs , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Cell Line, Tumor , Child , Humans , Janus Kinases/genetics , Leukocyte Common Antigens/metabolism , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proteomics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
18.
Elife ; 112022 07 06.
Article En | MEDLINE | ID: mdl-35793229

Natural killer (NK) cells are innate lymphocytes that eliminate virus-infected and cancer cells by cytotoxicity and cytokine secretion. In addition to circulating NK cells, distinct tissue-resident NK subsets have been identified in various organs. Although transcription factors regulating NK cell development and function have been extensively studied in mice, the role of RUNX2 in these processes has not been investigated, neither in mice nor in human. Here, by manipulating RUNX2 expression with either knockdown or overexpression in human haematopoietic stem cell-based NK cell differentiation cultures, combined with transcriptomic and ChIP-sequencing analyses, we established that RUNX2 drives the generation of NK cells, possibly through induction of IL-2Rß expression in NK progenitor cells. Importantly, RUNX2 promotes tissue residency in human NK cells. Our findings have the potential to improve existing NK cell-based cancer therapies and can impact research fields beyond NK cell biology, since tissue-resident subsets have also been described in other lymphocyte subpopulations.


Transcription Factors , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Expression Regulation , Killer Cells, Natural/metabolism , Transcription Factors/metabolism
19.
Cancers (Basel) ; 14(10)2022 May 23.
Article En | MEDLINE | ID: mdl-35626167

In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.

20.
Blood ; 139(23): 3418-3429, 2022 06 09.
Article En | MEDLINE | ID: mdl-35338774

The Plant Homeodomain 6 gene (PHF6) encodes a nucleolar and chromatin-associated leukemia tumor suppressor with proposed roles in transcription regulation. However, specific molecular mechanisms controlled by PHF6 remain rudimentarily understood. Here we show that PHF6 engages multiple nucleosome remodeling protein complexes, including nucleosome remodeling and deacetylase, SWI/SNF and ISWI factors, the replication machinery and DNA repair proteins. Moreover, after DNA damage, PHF6 localizes to sites of DNA injury, and its loss impairs the resolution of DNA breaks, with consequent accumulation of single- and double-strand DNA lesions. Native chromatin immunoprecipitation sequencing analyses show that PHF6 specifically associates with difficult-to-replicate heterochromatin at satellite DNA regions enriched in histone H3 lysine 9 trimethyl marks, and single-molecule locus-specific analyses identify PHF6 as an important regulator of genomic stability at fragile sites. These results extend our understanding of the molecular mechanisms controlling hematopoietic stem cell homeostasis and leukemia transformation by placing PHF6 at the crossroads of chromatin remodeling, replicative fork dynamics, and DNA repair.


Chromatin Assembly and Disassembly , Leukemia , Chromatin/genetics , DNA Repair , Humans , Nucleosomes , Repressor Proteins/genetics , Repressor Proteins/metabolism
...