Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Clin Transl Gastroenterol ; 11(8): e00199, 2020 08.
Article En | MEDLINE | ID: mdl-32955191

INTRODUCTION: Alterations in the composition of the human gut microbiome and its metabolites have been linked to gut epithelial neoplasia. We hypothesized that differences in mucosa-adherent Barrett's microbiota could link to risk factors, providing risk of progression to neoplasia. METHODS: Paired biopsies from both diseased and nonaffected esophagus (as well as gastric cardia and gastric juice for comparison) from patients with intestinal metaplasia (n = 10), low grade dysplasia (n = 10), high grade dysplasia (n = 10), esophageal adenocarcinoma (n = 12), and controls (n = 10) were processed for mucosa-associated bacteria and analyzed by 16S ribosomal ribonucleic acid V4 gene DNA sequencing. Taxa composition was tested using a generalized linear model based on the negative binomial distribution and the log link functions of the R Bioconductor package edgeR. RESULTS: The microbe composition of paired samples (disease vs nondisease) comparing normal esophagus with intestinal metaplasia, low grade dysplasia, high grade dysplasia, and adenocarcinoma showed significant decreases in the phylum Planctomycetes and the archaean phylum Crenarchaeota (P < 0.05, false discovery rate corrected) in diseased tissue compared with healthy controls and intrasample controls (gastric juice and unaffected mucosa). Genera Siphonobacter, Balneola, Nitrosopumilus, and Planctomyces were significantly decreased (P < 0.05, false discovery rate corrected), representing <10% of the entire genus community. These changes were unaffected by age, tobacco use, or sex for Crenarcha. DISCUSSSION: There are similar significant changes in bacterial genera in Barrett's esophageal mucosa, dysplasia, and adenocarcinoma compared with controls and intrapatient unaffected esophagus. Further work will establish the biologic plausibility of these specific microbes' contributions to protection from or induction of esophageal epithelial dysplasia.


Adenocarcinoma/microbiology , Barrett Esophagus/microbiology , Esophageal Mucosa/microbiology , Esophageal Neoplasms/microbiology , Gastrointestinal Microbiome , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Barrett Esophagus/diagnosis , Barrett Esophagus/pathology , Biopsy , Case-Control Studies , DNA, Bacterial/isolation & purification , Disease Progression , Esophageal Mucosa/diagnostic imaging , Esophageal Mucosa/pathology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Esophagoscopy , Female , Healthy Volunteers , Humans , Male , Middle Aged , Protective Factors , RNA, Ribosomal, 16S/genetics , Risk Factors
2.
Geroscience ; 40(3): 257-268, 2018 06.
Article En | MEDLINE | ID: mdl-29869736

Advanced age has been associated with alterations to the microbiome within the intestinal tract as well as intestinal permeability (i.e., "leaky gut"). Prior studies suggest that intestinal permeability may contribute to increases in systemic inflammation-an aging hallmark-possibly via microorganisms entering the circulation. Yet, no studies exist describing the state of the circulating microbiome among older persons. To compare microbiota profiles in serum between healthy young (20-35 years, n = 24) and older adults (60-75 years, n = 24) as well as associations between differential microbial populations and prominent indices of age-related inflammation. Unweighted Unifrac analysis, a measure of ß-diversity, revealed that microbial communities clustered differently between young and older adults. Several measures of α-diversity, including chao1 (p = 0.001), observed species (p = 0.001), and phylogenetic diversity (p = 0.002) differed between young and older adults. After correction for false discovery rate (FDR), age groups differed (all p values ≤ 0.016) in the relative abundance of the phyla Bacteroidetes, SR1, Spirochaetes, Bacteria_Other, TM7, and Tenericutes. Significant positive correlations (p values ≤ 0.017 after FDR correction) were observed between IGF1 and Bacteroidetes (ρ = 0.380), Spirochaetes (ρ = 0.528), SR1 (ρ = 0.410), and TM7 (ρ = 0.399). Significant inverse correlations were observed for IL6 with Bacteroidetes (ρ = - 0.398) and TM7 (ρ = - 0.423), as well as for TNFα with Bacteroidetes (ρ = - 0.344). Similar findings were observed at the class taxon. These data are the first to demonstrate that the richness and composition of the serum microbiome differ between young and older adults and that these factors are linked to indices of age-related inflammation.


DNA, Bacterial/blood , Inflammation/etiology , Insulin-Like Growth Factor I/metabolism , Interleukin-6/blood , Microbiota , Tumor Necrosis Factor-alpha/blood , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Young Adult
...