Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nanomedicine ; 61: 102769, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914247

RESUMEN

Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair (Shaer et al., 20141). Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy (Citation}Rani, S., Ryan, A. E., Griffin, M. D., and Ritter, T., 20152). This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.

2.
Pharmaceutics ; 16(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931933

RESUMEN

In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.

3.
Pharmaceutics ; 16(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399224

RESUMEN

Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.

4.
ACS Appl Mater Interfaces ; 16(6): 7983-7995, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38290481

RESUMEN

Developing a diffusion barrier layer on material interfaces has potential applications in various fields such as in packaging materials, pharmaceuticals, chemical filtration, microelectronics, and medical devices. Although numerous physical and chemical methods have been proposed to generate the diffusion barrier layer, the complexity of fabrication techniques and the high manufacturing costs limit their practical utility. Here, we propose an innovative approach to fabricate the diffusion barrier layer by irradiating poly(dimethylsiloxane) (PDMS) with a mid-infrared (λ = 10.6 µm) CO2 laser. This process directly creates a diffusion barrier layer on the PDMS surface by forming a heavily cross-linked network in the polymer matrix. The optimal irradiation conditions were investigated by modulating the defocusing distance, laser power, and number of scanning passes. The barrier thickness can reach up to 70 µm as observed by the scanning electron microscope (SEM). The attenuated total reflectance (ATR), electron dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses collectively confirmed the formation of the SiOx structure on the modified surface based on the decreased methyl group signal and the increased oxygen/silicon ratio. The diffusion test with the model drugs (rhodamine B and donepezil) demonstrated that the modified surface exhibits effective diffusion barrier properties and the rate of drug diffusion through the modified barrier layer can be controlled by the optimization of the irradiation parameters. This novel approach provides the possibility to develop a controllable diffusion barrier layer in a biocompatible polymer with prospective applications in the fields of pharmaceuticals, packing materials, and medical devices.

5.
J Microencapsul ; 40(2): 106-123, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36749573

RESUMEN

The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.


Asunto(s)
Finasterida , Nanopartículas , Humanos , Finasterida/farmacología , Alopecia , Liofilización , Tamaño de la Partícula
6.
Expert Opin Drug Deliv ; 20(1): 93-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453201

RESUMEN

INTRODUCTION: In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED: We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION: This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.


Asunto(s)
Nanopartículas , Emulsiones/química , Nanopartículas/química , Tamaño de la Partícula
7.
Phys Chem Chem Phys ; 25(2): 1177-1186, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36519558

RESUMEN

In this study, we explored how chemical reactions of amphiphile compounds can be characterized and followed-up on model interfaces. A custom-made surfactant containing three alkyne sites was first adsorbed and characterized at a water/oil interface. These amphiphiles then underwent interfacial crosslinking by click chemistry upon the addition of a second reactive agent. The monolayer properties and dilatational elasticity, were compared before and after the polymerization. Using bulk phase exchange, the composition of the aqueous bulk phase was finely controlled and washed to specifically measure the interfacial effects of the entities adsorbed and trapped at the interface. In this study, we aim to emphasize an original experimental approach to follow complex phenomena occurring on model interfaces, and also show the potential of this method to characterize multifactorial processes.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Tensoactivos/química , Agua/química , Química Clic , Adsorción
8.
Pharmaceutics ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959322

RESUMEN

Biphasic drug delivery systems are used for quick release of a specific amount of drug for immediate amelioration of a patient's state, followed by sustained release, to avoid repeated administration. This type of delivery is often necessary for pain management and the treatment of many pathologies, such as migraines, hypertension, and insomnia. In this work, we propose a novel architecture of a biphasic release media that does not need the rapidly disintegrating layer and that allows for easily setting the sustained release rate. A drug-containing capsule is made by rolling up a thermally crosslinked gelatin strip on which drug reservoirs are formed by casting. The quick-release reservoir (QRR) is placed at the strip's extremity, from which the rolling starts, while the sustained-release reservoir (SRR) is formed in the middle part of the strip. The strip is rolled around a cylinder that is a few millimeters wide, which is removed after rolling. The roll is stabilized by transglutaminase-catalyzed crosslinking of the consecutive shells. A biphasic release is successfully demonstrated with the use of model fluorescent drugs for single-dye and double-dye systems in phosphate-buffered saline (PBS) solution with pH = 7.4. In vitro, the drug from the QRR, placed at the walls of the cavity of the roll, is released immediately upon the capsule's contact with the PBS solution. The drug from the SRR, embedded between the roll's layers, diffuses steadily, with the lag time defined by the radial position of the reservoir.

9.
Adv Drug Deliv Rev ; 179: 114019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34699940

RESUMEN

Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Sistema de Administración de Fármacos con Nanopartículas/química , Fitoquímicos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Infección Hospitalaria/microbiología , Portadores de Fármacos , Liberación de Fármacos , Farmacorresistencia Bacteriana Múltiple/fisiología , Estabilidad de Medicamentos , Equipos y Suministros/microbiología , Humanos , Tamaño de la Partícula , Fitoquímicos/administración & dosificación , Fitoquímicos/química
10.
Pharmaceutics ; 13(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371723

RESUMEN

Nano-emulsions consist of stable suspensions of nano-scaled droplets that have huge loading capacities and are formulated with safe compounds. For these reasons, a large number of studies have described the potential uses of nano-emulsions, focusing on various aspects such as formulation processes, loading capabilities, and surface modifications. These studies typically concern direct nano-emulsions (i.e., oil-in-water), whereas studies on reverse nano-emulsions (i.e., water-in-oil) remain anecdotal. However, reverse nano-emulsion technology is very promising (e.g., as an alternative to liposome technology) for the development of drug delivery systems that encapsulate hydrophilic compounds within double droplets. The spontaneous emulsification process has the added advantages of optimization of the energetic yield, potential for industrial scale-up, improved loading capabilities, and preservation of fragile compounds targeted for encapsulation. In this study, we propose a detailed investigation of the processes and formulation parameters involved in the spontaneous nano-emulsification that produces water-in-oil nano-emulsions. The following details were addressed: (i) the order of mixing of the different compounds (method A and method B), (ii) mixing rates, (iii) amount of surfactants, (iv) type and mixture of surfactants, (v) amount of dispersed phase, and (vi) influence of the nature of the oil. The results emphasized the effects of the formulation parameters (e.g., the volume fraction of the dispersed phase, nature or concentration of surfactant, or nature of the oil) on the nature and properties of the nano-emulsions formed.

11.
Nanomedicine ; 34: 102379, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713860

RESUMEN

Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-ß-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.


Asunto(s)
Senescencia Celular , Portadores de Fármacos , Endotelio Vascular/citología , Colorantes Fluorescentes/química , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Autoanticuerpos/inmunología , Proliferación Celular , Endotelio Vascular/metabolismo , Medicina de Precisión , Porcinos , Molécula 1 de Adhesión Celular Vascular/inmunología
12.
Langmuir ; 37(8): 2586-2595, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577340

RESUMEN

In this work, we used an original experimental setup to examine the behavior of insoluble monolayers made with pH-sensitive lipids. Two kinds of unsaturated lipids were chosen: a cationic one (lipid 1) bearing an ammonium headgroup and an anionic one (lipid 2) terminated with an acidic phenol group. The lipids were deposited onto an air bubble interface maintained in an aqueous phase and, after stabilization, were subjected to a series of compressions performed at different pH values. These experiments disclosed a gradual increase in the specific area per molecule when lipids were neutralized. Imposing a pH variation at constant bubble volume also provided surface pressure profiles that confirmed this molecular behavior. As complementary characterization, dilatational rheology disclosed a phase transition from a purely elastic monophasic system to a viscoelastic two-phase system. We hypothesized that this unexpected increase in the specific area with lipid neutralization is related to the presence of unsaturations in each of the two branches of the hydrophobic tails that induce disorder, thereby increasing the molecular area at the interface. Application of the two-dimensional Volmer equation of state allowed the generation of quantitative values for the specific areas that showed variations with pH. It also allowed the determination of apparent pKa values, which are affected by both the electrostatic potential within the monolayer and the affinity of the lipid polar head for the aqueous phase.

13.
Soft Matter ; 17(7): 1788-1795, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33398307

RESUMEN

Nano-emulsions are defined as stable oil droplets sizing below 300 nm. Their singular particularity lies in the loading capabilities of their oily core, much higher than other kinds of carrier. On the other hand, functionalizing the dynamic oil/water interface, to date, has remained a challenge. To ensure the best anchoring of the reactive functions onto the surface of the droplets, we have designed specific amphiphilic polymers (APs) based on poly(maleic anhydride-alt-1-octadecene), stabilizing the nano-emulsions instead of surfactants. Aliphatic C18 chains of the APs are anchored in the droplet core, while the hydrophilic parts of the APs are poly(ethylene glycol) (PEG) chains. In addition, PEG chains are terminated with reactive (i) azide functions in order to prove the concept of the droplet decoration with clickable rhodamine (Rh-DBCO, specifically synthesized for this study), or (ii) biotin functions to verify the potential droplet functionalization with fluorescent streptavidin (streptavidin-AF-488). This study describes AP synthesis, physico-chemical characterization of the functional droplets (electron microscopy), and finally fluorescence labeling and droplet decoration. To conclude, these APs constitute an interesting solution for the stable functionalization of nano-emulsion droplets, paving a new way for the applications of nano-emulsions in targeting drug delivery.


Asunto(s)
Polímeros , Tensoactivos , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles
14.
Chembiochem ; 22(4): 657-661, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32986915

RESUMEN

Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.


Asunto(s)
Flúor/química , Halogenación , Péptidos y Proteínas de Señalización Intercelular/química , Resonancia Magnética Nuclear Biomolecular/métodos , Humanos , Micelas
15.
Artículo en Inglés | MEDLINE | ID: mdl-32831876

RESUMEN

The prevalence of nosocomial infections due to multidrug resistant (MDR) bacterial strains is associated with high morbidity and mortality. Folk medicine and ethnopharmacological data can provide a broad range of plants with promising antimicrobial activity. Triphala, an Ayurvedic formula composed of three different plants: Terminalia chebula Retz., Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and Phyllanthus emblica L. (Phyllanthaceae), is used widely for various microbial infections. Various extraction techniques were applied in the extraction of the biologically active constituents of Triphala in order to compare their efficiency. Microwave-assisted extraction (MAE) was shown to be the most efficient method based on yield, extraction time, and selectivity. The Triphala hydroalcoholic extract (TAE) has been chemically characterized with spectroscopic and chromatographic techniques. Triphala hydroalcoholic extract was evaluated alone or with carvacrol. Different drug formulations including cream and nanoemulsion hydrogel were prepared to assess the antimicrobial activity against selected microorganism strains including Gram-positive and Gram-negative bacteria and fungi. We used a lipophilic oil of carvacrol (5 mg/mL) and a hydrophilic TAE (5 mg/mL) ingredient in a dosage form. Two solutions were created: hydrogel containing nanoemulsion as a lipophilic vector dispersed in the gel as a hydrophilic vehicle and a cream formulation, an oil-in-water emulsion. In both cases, the concentration was 250 mg of active ingredient in 50 mL of final formulation. The formulas developed were stable from a physical and chemical perspective. In the nanoemulsion hydrogel, the oil droplet size ranged from 124 to 129 nm, with low polydispersity index (PdI) 0.132 ± 0.013 and negative zeta potential -46.4 ± 4.3 mV. For the cream, the consistency factor (cetyl alcohol and white wax) induced immobilization of the matrix structure and the stability. Triphala hydroalcoholic extract in drug nanoformulation illustrated might be an adjuvant antimicrobial agent for treating various microbial infections.

16.
J Colloid Interface Sci ; 578: 768-778, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32574910

RESUMEN

Nano-emulsion consists of a dispersion of oil droplets sizing below 200 nm, in aqueous continuous phase, and generally stabilized by low-molecular-weight surfactants. These stable nano-carriers are able to encapsulate and transport lipophilic molecules poorly soluble in water. However, the question on the leakage and release mechanisms of an active pharmaceutical ingredient, from oil nano-droplets to an acceptor medium has not been clearly addressed. Herein, we developed a simple fluorescence approach based on self-quenching of lipophilic fluorophore-based on Nile Red (NR668) to monitor cargo transfer from lipid nano-droplets to the acceptor medium. In this method, the fluorophore release can be monitored by the increase in its fluorescence quantum yield and the blue shift in its emission spectrum. The studies of the release process allow emphasizing an important role of the bulk aqueous medium in controlling the droplet to droplet fluorophore transfer and the attained equilibrium. The developed methodology could be applied to monitor release of other lipophilic dyes and it could help to better understand the cargo release from nanocarriers.

17.
Int J Pharm ; 586: 119534, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32531451

RESUMEN

Statins have been proposed as potential adjuvant to periodontal treatment due to their pleiotropic properties. A new thermosensitive chitosan hydrogel loaded with statins (atorvastatin and lovastatin) nanoemulsions was synthesized to allow a spatially controlled local administration of active compounds at lesion site. Spontaneous nano-emulsification method was used to synthesize statins loaded nanoemulsions. In vitro, atorvastatin and lovastatin loaded nanoemulsions were cytocompatible and were able to be uptake by oral epithelial cells. Treatment of Porphyromonas gingivalis infected oral epithelial cells and gingival fibroblasts with atorvastatin and lovastatin loaded nanoemulsions decreased significantly pro-inflammatory markers expression (TNF-α and IL-1ß) and pro-osteoclastic RANKL. Nevertheless, such treatment induced the expression of Bone sialoprotein 2 (BSP2) in osteoblast emphasizing the pro-healing properties of atorvastatin and lovastatin nanoemulsions. In vivo, in a calvarial bone defect model (2 mm), treatment with the hydrogel loaded with atorvastatin and lovastatin nanoemulsions induced a significant increase of the neobone formation in comparison with systemic administration of statins. This study demonstrates the potential of this statins loaded hydrogel to improve bone regeneration and to decrease soft tissue inflammation. Its use in the specific context of periodontitis management could be considered in the future with a reduced risk of side effects.


Asunto(s)
Atorvastatina/farmacología , Regeneración Ósea/efectos de los fármacos , Quitosano/química , Lovastatina/farmacología , Animales , Atorvastatina/administración & dosificación , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Encía/citología , Encía/efectos de los fármacos , Humanos , Hidrogeles , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Porphyromonas gingivalis/efectos de los fármacos
18.
Int J Pharm ; 585: 119481, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32473375

RESUMEN

Nanosized gel particles, so-called nanogels, have attracted substantial interest in different application fields, thanks to their controllable and three-dimensional physical structure, good mechanical properties and potential biocompatibility. Literature reports many technologies for their preparation and design, however a recurrent limitation remains in their broad size distributions as well as in the poor size control. Therefore, the monodisperse and size-controlled nanogels preparation by simple process -like emulsification- is a real challenge still in abeyance to date. In this study we propose an original low energy emulsification approach for the production of monodisperse nanogels, for which the size can be finely controlled in the range 30 to 200 nm. The principle lies in the fabrication of a direct nano-emulsion containing both oil (medium chain triglycerides) and a bi-functional acrylate monomer. The nanogels are thus formed in situ upon UV irradiation of the droplet suspension. Advantage of such modification of the oil nano-carriers are the potential modulation of the release of encapsulated drugs, as a function of the density and/or properties of the polymer chain network entrapped in the oil nano-droplets. This hypothesis was confirmed using a model of hydrophobic drug -ketoprofen- entrapped into the nanogels particles, along with the study of the release profile, carried out in function of the nature of the monomers, density of polymer chains, and different formulation parameters.


Asunto(s)
Química Farmacéutica/métodos , Emulsiones/síntesis química , Lípidos/síntesis química , Nanogeles/química , Emulsiones/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cetoprofeno/síntesis química , Cetoprofeno/metabolismo , Metabolismo de los Lípidos , Nanopartículas/química , Nanopartículas/metabolismo
19.
Colloids Surf B Biointerfaces ; 191: 111010, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32315927

RESUMEN

The purpose of this study was to develop Pickering water-in-oil nano-emulsions only stabilized by Eudragit RL100 nanoparticles (NPs), in order to increase the nano-emulsion stability and create a barrier to improve the drug encapsulation and better control the drug release. The first part of this study was dedicated to investigating the nano-emulsion formulation by ultrasonication and understanding the interfacial behavior and role of NPs in the stabilization of the water/oil interface. The focus was on the surface coverage in the function of the formulation parameters (volume fractions) to disclose the extents and limitations of the process. The main physicochemical analysis of the Pickering nano-emulsions was performed by dynamic light scattering and transmission electron microscopy. On the other hand, the second experimental approach was dedicated to understanding the interfacial behavior of the Eudragit RL100 NPs toward a model water/oil interface, using a dynamic tensiometer with axisymmetric drop shape analysis. The study investigated the NPs' adsorption, as well as their rheological behavior. The aim of this part was to reveal the main phenomena that govern the interactions between NPs and the interface in order to understand the origin of Pickering nano-emulsions' stability. The last part of the study was concerned with the stability and in vitro release of a model encapsulated drug (ketoprofen) in a gastric and simulated intestinal environment. The results showed that Pickering nano-emulsions significantly improved the resistance to gastric pH, inducing a significantly slower drug release compared to classical nano-emulsions' stabilized surfactants. These Pickering nano-emulsions appear as a promising technology to modify the delivery of a therapeutic agent, in the function of the pH, and can be, for instance, applied to the oral drug delivery of poorly soluble drugs.


Asunto(s)
Resinas Acrílicas/química , Antiinflamatorios no Esteroideos/química , Sistemas de Liberación de Medicamentos , Cetoprofeno/química , Nanopartículas/química , Resinas Acrílicas/administración & dosificación , Administración Oral , Liberación de Fármacos , Emulsiones/administración & dosificación , Emulsiones/química , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie
20.
J Control Release ; 321: 285-311, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32057990

RESUMEN

Hyperbranched polymers (HBPs) have found use in a wide range of applications, such as optical, electronic and magnetic materials, coatings, additives, supramolecular chemistry, and biomedicine. HBPs have gained attention for the development of drug delivery systems due to the presence of internal cavities in their three-dimensional globular structure that can be used to encapsulate drugs and their facile synthesis as compared to dendrimers. The composition, topology, and functionality of HBPs have been tuned to design drug carriers with better efficacies. Recent advances have been reported to introduce functional groups to enhance targeting tumor cells. HBPs have been modified to promote passive and active targeting. This review article will describe the different routes to synthesize hyperbranched polymer, their use as drug carriers for targeted drug delivery, and their functionalization with ligands for active targeting through various synthesis strategies to give the reader an extended overview of the progresses accomplished in this field. The modification of HBPs with ligands such as peptides, oligonucleotides, and folic acid have been demonstrated to enhance the accumulation of the drug selectively at the tumor sites. The potential uses and developments of HBPs as nanoobjects for theranostics for example are discussed as perspectives.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Portadores de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...