Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908008

RESUMEN

BACKGROUND: The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends of floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. SCOPE: Here we present a roadmap to synthesise the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realised morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm, and seed coat but also fruit attributes (e.g., dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. CONCLUSIONS: We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.

3.
Ann Bot ; 133(7): 917-930, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38441303

RESUMEN

BACKGROUND AND AIMS: Plant breeders are increasingly turning to crop wild relatives (CWRs) to ensure food security in a rapidly changing environment. However, CWR populations are confronted with various human-induced threats, including hybridization with their nearby cultivated crops. This might be a particular problem for wild coffee species, which often occur near coffee cultivation areas. Here, we briefly review the evidence for wild Coffea arabica (cultivated as Arabica coffee) and Coffea canephora (cultivated as Robusta coffee) and then focused on C. canephora in the Yangambi region in the Democratic Republic of the Congo. There, we examined the geographical distribution of cultivated C. canephora and the incidence of hybridization between cultivated and wild individuals within the rainforest. METHODS: We collected 71 C. canephora individuals from home gardens and 12 C. canephora individuals from the tropical rainforest in the Yangambi region and genotyped them using genotyping-by-sequencing (GBS). We compared the fingerprints with existing GBS data from 388 C. canephora individuals from natural tropical rainforests and the INERA Coffee Collection, a Robusta coffee field gene bank and the most probable source of cultivated genotypes in the area. We then established robust diagnostic fingerprints that genetically differentiate cultivated from wild coffee, identified cultivated-wild hybrids and mapped their geographical position in the rainforest. KEY RESULTS: We identified cultivated genotypes and cultivated-wild hybrids in zones with clear anthropogenic activity, and where cultivated C. canephora in home gardens may serve as a source for crop-to-wild gene flow. We found relatively few hybrids and backcrosses in the rainforests. CONCLUSIONS: The cultivation of C. canephora in close proximity to its wild gene pool has led to cultivated genotypes and cultivated-wild hybrids appearing within the natural habitats of C. canephora. Yet, given the high genetic similarity between the cultivated and wild gene pool, together with the relatively low incidence of hybridization, our results indicate that the overall impact in terms of risk of introgression remains limited so far.


Asunto(s)
Coffea , Flujo Génico , Coffea/genética , República Democrática del Congo , Productos Agrícolas/genética , Hibridación Genética , Bosque Lluvioso , Genotipo
4.
New Phytol ; 240(2): 555-564, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37537732

RESUMEN

Seed dormancy maximizes plant recruitment in habitats with variation in environmental suitability for seedling establishment. Yet, we still lack a comprehensive synthesis of the macroecological drivers of nondormancy and the different classes of seed dormancy: physiological dormancy, morphophysiological dormancy and physical dormancy. We examined current geographic patterns and environmental correlates of global seed dormancy variation. Combining the most updated data set on seed dormancy classes for > 10 000 species with > 4 million georeferenced species occurrences covering all of the world's biomes, we test how this distribution is driven by climate and fire regime. Seed dormancy is prevalent in seasonally cold and dry climates. Physiological dormancy occurs in relatively dry climates with high temperature seasonality (e.g. temperate grasslands). Morphophysiological dormancy is more common in forest-dominated, cold biomes with comparatively high and evenly distributed precipitation. Physical dormancy is associated with dry climates with strong seasonal temperature and precipitation fluctuations (e.g. deserts and savannas). Nondormancy is associated with stable, warm and wetter climates (e.g. tropical rain forest). Pyroclimate had no significant effect on the distribution of seed dormancy. The environmental drivers considered in this study had a comparatively low predictive power, suggesting that macroclimate is just one of several global drivers of seed dormancy.


Asunto(s)
Germinación , Latencia en las Plantas , Latencia en las Plantas/fisiología , Germinación/fisiología , Semillas/fisiología , Clima , Plantas , Temperatura , Estaciones del Año
5.
Heredity (Edinb) ; 130(3): 145-153, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596880

RESUMEN

Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.


Asunto(s)
Coffea , Humanos , Coffea/genética , Café , República Democrática del Congo , Bosques , Variación Genética
6.
Ann Bot ; 130(6): 773-784, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36349952

RESUMEN

BACKGROUND: Plant seeds have many traits that influence ecological functions, ex situ conservation, restoration success and their sustainable use. Several seed traits are known to vary significantly between tropical and temperate regions. Here we present three additional traits for which existing data indicate differences between geographical zones. We discuss evidence for geographical bias in availability of data for these traits, as well as the negative consequences of this bias. SCOPE: We reviewed the literature on seed desiccation sensitivity studies that compare predictive models to experimental data and show how a lack of data on populations and species from tropical regions could reduce the predictive power of global models. In addition, we compiled existing data on relative embryo size and post-dispersal embryo growth and found that relative embryo size was significantly larger, and embryo growth limited, in tropical species. The available data showed strong biases towards non-tropical species and certain families, indicating that these biases need to be corrected to perform truly global analyses. Furthermore, we argue that the low number of seed germination studies on tropical high-mountain species makes it difficult to compare across geographical regions and predict the effects of climate change in these highly specialized tropical ecosystems. In particular, we show that seed traits of geographically restricted páramo species have been studied less than those of more widely distributed species, with most publications unavailable in English or in the peer-reviewed literature. CONCLUSIONS: The low availability of functional seed trait data from populations and species in the tropics can have negative consequences for macroecological studies, predictive models and their application to plant conservation. We propose that global analyses of seed traits with evidence for geographical variation prioritize generation of new data from tropical regions as well as multi-lingual searches of both the grey- and peer-reviewed literature in order to fill geographical and taxonomic gaps.


Asunto(s)
Ecosistema , Semillas , Plantas
7.
Genet Resour Crop Evol ; 69(7): 2515-2534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017134

RESUMEN

Collection and storage of crop wild relative (CWR) germplasm is crucial for preserving species genetic diversity and crop improvement. Nevertheless, much of the genetic variation of CWRs is absent in ex situ collections and detailed passport data are often lacking. Here, we focussed on Musa balbisiana, one of the two main progenitor species of many banana cultivars. We investigated the genetic structure of M. balbisiana across its distribution range using microsatellite markers. Accessions stored at the International Musa Germplasm Transit Centre (ITC) ex situ collection were compared with plant material collected from multiple countries and home gardens from Vietnam. Genetic structure analyses revealed that accessions could be divided into three main clusters. Vietnamese and Chinese populations were assigned to a first and second cluster respectively. A third cluster consisted of ITC and home garden accessions. Samples from Papua New Guinea were allocated to the cluster with Chinese populations but were assigned to a separate fourth cluster if the number of allowed clusters was set higher. Only one ITC accession grouped with native M. balbisiana populations and one group of ITC accessions was nearly genetically identical to home garden samples. This questioned their wild status, including accessions used as reference for wild M. balbisiana. Moreover, most ITC accessions and home garden samples were genetically distinct from wild populations. Our results highlight that additional germplasm should be collected from the native distribution range, especially from Northeast India, Myanmar, China, and the Philippines and stored for ex situ conservation at the ITC. The lack of passport data for many M. balbisiana accessions also complicates the interpretation of genetic information in relation to cultivation and historical dispersal routes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10722-022-01389-4.

8.
Food Energy Secur ; 11(1): e345, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35866053

RESUMEN

Storing seed collections of crop wild relatives, wild plant taxa genetically related to crops, is an essential component in global food security. Seed banking protects genetic resources from degradation and extinction and provides material for use by breeders. Despite being among the most important crops in the world, banana and plantain crop wild relatives are largely under-represented in genebanks. Nevertheless, banana crop wild relative seed collections are in fact held in different countries, but these have not previously been part of reporting or analysis. To fill this gap, we firstly collated banana seed accession data from 13 institutions in 10 countries. These included 537 accessions containing an estimated 430,000 seeds of 56 species. We reviewed their taxonomic coverage and seed storage conditions including viability estimates. We found that seed accessions have low viability (25% mean) representing problems in seed storage and processing. Secondly, we surveyed 22 institutions involved in banana genetic resource conservation regarding the key constraints and knowledge gaps that institutions face related to banana seed conservation. Major constraints were identified including finding suitable material and populations to collect seeds from, lack of knowledge regarding optimal storage conditions and germination conditions. Thirdly, we carried out a conservation prioritization and gap analysis of Musaceae taxa, using established methods, to index representativeness. Overall, our conservation assessment showed that despite this extended data set banana crop wild relatives are inadequately conserved, with 51% of taxa not represented in seed collections at all; the average conservation assessment showing high priority for conservation according to the index. Finally, we provide recommendations for future collecting, research, and management, to conserve banana and plantain crop wild relatives in seed banks for future generations.

9.
Conserv Physiol ; 10(1): coab099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492425

RESUMEN

The ability of seeds to withstand drying is fundamental to ex situ seed conservation but drying responses are not well known for most wild species including crop wild relatives. We look at drying responses of seeds of Musa acuminata and Musa balbisiana, the two primary wild relatives of bananas and plantains, using the following four experimental approaches: (i) We equilibrated seeds to a range of relative humidity (RH) levels using non-saturated lithium chloride solutions and subsequently measured moisture content (MC) and viability. At each humidity level we tested viability using embryo rescue (ER), tetrazolium chloride staining and germination in an incubator. We found that seed viability was not reduced when seeds were dried to 4% equilibrium relative humidity (eRH; equating to 2.5% MC). (ii) We assessed viability of mature and less mature seeds using ER and germination in the soil and tested responses to drying. Findings showed that seeds must be fully mature to germinate and immature seeds had negligible viability. (iii) We dried seeds extracted from ripe/unripe fruit to 35-40% eRH at different rates and tested viability with germination tests in the soil. Seeds from unripe fruit lost viability when dried and especially when dried faster; seeds from ripe fruit only lost viability when fast dried. (iv) Finally, we dried and re-imbibed mature and less mature seeds and measured embryo shrinkage and volume change using X-ray computer tomography. Embryos of less mature seeds shrank significantly when dried to 15% eRH from 0.468 to 0.262 mm3, but embryos of mature seeds did not. Based on our results, mature seeds from ripe fruit are desiccation tolerant to moisture levels required for seed genebanking but embryos from immature seeds are mechanistically less able to withstand desiccation, especially when water potential gradients are high.

10.
Front Plant Sci ; 13: 774241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251072

RESUMEN

Globally distributed extant conifer species must adapt to various environmental conditions, which would be reflected in their xylem structure, especially in the tracheid characteristics of earlywood and latewood. With an anatomical trait dataset of 78 conifer species growing throughout China, an interspecific study within a phylogenetic context was conducted to quantify variance of tracheid dimensions and their response to climatic and soil conditions. There was a significant difference in tracheid diameter between earlywood and latewood while no significant difference was detected in tracheid wall thickness through a phylogenetically paired t-test. Through a phylogenetic principle component analysis, Pinaceae species were found to be strongly divergent in their tracheid structure in contrast to a conservative tracheid structure in species of Cupressaceae, Taxaceae, and Podocarpaceae. Tracheid wall thickness decreased from high to low latitudes in both earlywood and latewood, with tracheid diameter decreasing for latewood only. According to the most parsimonious phylogenetic general least square models, environment and phylogeny together could explain about 21∼56% of tracheid structure variance. Our results provide insights into the effects of climate and soil on the xylem structure of conifer species thus furthering our understanding of the trees' response to global change.

11.
Ann Bot ; 129(7): 775-786, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303062

RESUMEN

BACKGROUND AND AIMS: Interactions between ecological factors and seed physiological responses during the establishment phase shape the distribution of plants. Yet, our understanding of the functions and evolution of early-life traits has been limited by the scarcity of large-scale datasets. Here, we tested the hypothesis that the germination niche of temperate plants is shaped by their climatic requirements and phylogenetic relatedness, using germination data sourced from a comprehensive seed conservation database of the European flora (ENSCOBASE). METHODS: We performed a phylogenetically informed Bayesian meta-analysis of primary data, considering 18 762 germination tests of 2418 species from laboratory experiments conducted across all European geographical regions. We tested for the interaction between species' climatic requirements and germination responses to experimental conditions including temperature, alternating temperature, light and dormancy-breaking treatments, while accounting for between-study variation related to seed sources and seed lot physiological status. KEY RESULTS: Climate was a strong predictor of germination responses. In warm and seasonally dry climates the seed germination niche includes a cold-cued germination response and an inhibition determined by alternating temperature regimes and cold stratification, while in climates with high temperature seasonality opposite responses can be observed. Germination responses to scarification and light were related to seed mass but not to climate. We also found a significant phylogenetic signal in the response of seeds to experimental conditions, providing evidence that the germination niche is phylogenetically constrained. Nevertheless, phylogenetically distant lineages exhibited common germination responses under similar climates. CONCLUSION: This is the first quantitative meta-analysis of the germination niche at a continental scale. Our findings showed that the germination niches of European plants exhibit evolutionary convergence mediated by strong pressures at the macroclimatic level. In addition, our methodological approach highlighted how large datasets generated by conservation seed banking can be valuable sources to address questions in plant macroecology and evolution.


Asunto(s)
Germinación , Magnoliopsida , Teorema de Bayes , Germinación/fisiología , Filogenia , Latencia en las Plantas , Plantas , Semillas/fisiología , Temperatura
12.
MycoKeys ; 87: 53-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210922

RESUMEN

Fusarium is one of the most important fungal genera of plant pathogens that affect the cultivation of a wide range of crops. Agricultural losses caused by Fusariumoxysporumf.sp.cubense (Foc) directly affect the income, subsistence, and nourishment of thousands of farmers worldwide. For Viet Nam, predictions on the impact of Foc for the future are dramatic, with an estimated loss in the banana production area of 8% within the next five years and up to 71% within the next 25 years. In the current study, we applied a combined morphological-molecular approach to assess the taxonomic identity and phylogenetic position of the different Foc isolates collected in northern Viet Nam. In addition, we aimed to estimate the proportion of the different Fusarium races infecting bananas in northern Viet Nam. The morphology of the isolates was investigated by growing the collected Fusarium isolates on four distinct nutritious media (PDA, SNA, CLA, and OMA). Molecular phylogenetic relationships were inferred by sequencing partial rpb1, rpb2, and tef1a genes and adding the obtained sequences into a phylogenetic framework. Molecular characterization shows that c. 74% of the Fusarium isolates obtained from infected banana pseudostem tissue belong to F.tardichlamydosporum. Compared to F.tardichlamydosporum, F.odoratissimum accounts for c.10% of the Fusarium wilt in northern Viet Nam, demonstrating that Foc TR4 is not yet a dominant strain in the region. Fusariumcugenangense - considered to cause Race 2 infections among bananas - is only found in c. 10% of the tissue material that was obtained from infected Vietnamese bananas. Additionally, one of the isolates cultured from diseased bananas was phylogenetically not positioned within the F.oxysporum species complex (FOSC), but in contrast, fell within the Fusariumfujikuroi species complex (FFSC). As a result, a possible new pathogen for bananas may have been found. Besides being present on several ABB 'Tay banana', F.tardichlamydosporum was also derived from infected tissue of a wild Musalutea, showing the importance of wild bananas as a possible sink for Foc.

14.
Ecol Evol ; 11(21): 14644-14657, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765131

RESUMEN

Ecologically meaningful seed germination experiments are constrained by access to seeds and relevant environments for testing at the same time. This is particularly the case when research is carried out far from the native area of the studied species.Here, we demonstrate an alternative-the use of glasshouses in botanic gardens as simulated-natural habitats to extend the ecological interpretation of germination studies. Our focal taxa were banana crop wild relatives (Musa acuminata subsp. burmannica, Musa acuminata subsp. siamea, and Musa balbisiana), native to tropical and subtropical South-East Asia. Tests were carried out in Belgium, where we performed germination tests in relation to foliage-shading/exposure to solar radiation and seed burial depth, as well as seed survival and dormancy release in the soil. We calibrated the interpretation of these studies by also conducting an experiment in a seminatural habitat in a species native range (M. balbisiana-Los Baños, the Philippines), where we tested germination responses to exposure to sun/shade. Using temperature data loggers, we determined temperature dynamics suitable for germination in both these settings.In these seminatural and simulated-natural habitats, seeds germinated in response to exposure to direct solar radiation. Seed burial depth had a significant but marginal effect by comparison, even when seeds were buried to 7 cm in the soil. Temperatures at sun-exposed compared with shaded environments differed by only a few degrees Celsius. Maximum temperature of the period prior to germination was the most significant contributor to germination responses and germination increased linearly above a threshold of 23℃ to the maximum temperature in the soil (in simulated-natural habitats) of 35℃.Glasshouses can provide useful environments to aid interpretation of seed germination responses to environmental niches.

15.
Am J Bot ; 108(12): 2425-2434, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634128

RESUMEN

PREMISE: Many cultivated coffee varieties descend from Coffea canephora, commonly known as Robusta coffee. The Congo Basin has a century-long history of Robusta coffee cultivation and breeding, and is hypothesized to be the region of origin of many of the cultivated Robusta varieties. Since little is known about the genetic composition of C. canephora in this region, we assessed the genetic diversity of wild and cultivated C. canephora shrubs in the Democratic Republic of the Congo. METHODS: Using 18 microsatellite markers, we studied the genetic composition of wild and backyard-grown C. canephora shrubs in the Tshopo and Ituri provinces and multiple accessions from the INERA Yangambi Coffee Collection. We assessed genetic clustering patterns, genetic diversity, and genetic differentiation between populations. RESULTS: Genetic differentiation was relatively strong between wild and cultivated C. canephora shrubs, and both gene pools harbored multiple unique alleles. Strong genetic differentiation was also observed between wild populations. The level of genetic diversity in wild populations was similar to that of the INERA Yangambi Coffee Collection, but local wild genotypes were mostly missing from that collection. Shrubs grown in the backyards were genetically similar to the breeding material from INERA Yangambi. CONCLUSIONS: Most C. canephora that is grown in local backyards originated from INERA breeding programs, while a few shrubs were obtained directly from surrounding forests. The INERA Yangambi Coffee Collection could benefit from an enrichment with local wild genotypes to increase the genetic resources available for breeding purposes and to support ex situ conservation.


Asunto(s)
Coffea , Coffea/genética , República Democrática del Congo , Marcadores Genéticos , Variación Genética
16.
Ecol Evol ; 11(13): 8640-8653, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34257920

RESUMEN

Knowing species' breeding system and mating processes occurring in populations is important not only for understanding population dynamics, gene flow processes, and species' response to climate change, but also for designing control plans of invasive species. Geranium robertianum, a widespread biennial herbaceous species showing high morphological variation and wide ecological amplitude, can become invasive outside its distribution range. A mixed-mating system may be expected given the species' floral traits. However, autonomous selfing is considered as a common feature. Genetic variation and structure, and so population mating processes, have not been investigated in wild populations. We developed 15 polymorphic microsatellite markers to quantify genetic variation and structure in G. robertianum. To investigate whether selfing might be the main mating process in natural conditions, we sampled three generations of plants (adult, F1, and F2) for populations from the UK, Spain, Belgium, Germany, and Sweden, and compared open-pollinated with outcrossed hand-pollinated F2 progeny. The highly positive Wright's inbreeding coefficient (F IS) values in adults, F1, and open-pollinated F2 progeny and the low F IS values in outcross F2 progeny supported autonomous selfing as the main mating process for G. robertianum in wild conditions, despite the presence of attractive signals for insect pollination. Genetic differentiation among samples was found, showing some western-eastern longitudinal trend. Long-distance seed dispersal might have contributed to the low geographic structure. Local genetic differentiation may have resulted not only from genetic drift effects favored by spontaneous selfing, but also from ecological adaptation. The presence of duplicate loci with disomic inheritance is consistent with the hypothesis of allotetraploid origin of G. robertianum. The fact that most microsatellite markers behave as diploid loci with no evidence of duplication supports the hypothesis of ancient polyploidization. The differences in locus duplication and the relatively high genetic diversity across G. robertianum range despite spontaneous autonomous selfing suggest multiple events of polyploidization.

17.
PLoS One ; 16(6): e0253255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161368

RESUMEN

Crop wild relatives (CWR) are an indispensable source of alleles to improve desired traits in related crops. While knowledge on the genetic diversity of CWR can facilitate breeding and conservation strategies, it has poorly been assessed. Cultivated bananas are a major part of the diet and income of hundreds of millions of people and can be considered as one of the most important fruits worldwide. Here, we assessed the genetic diversity and structure of Musa balbisiana, an important CWR of plantains, dessert and cooking bananas. Musa balbisiana has its origin in subtropical and tropical broadleaf forests of northern Indo-Burma. This includes a large part of northern Vietnam where until now, no populations have been sampled. We screened the genetic variation and structure present within and between 17 Vietnamese populations and six from China using 18 polymorphic SSR markers. Relatively high variation was found in populations from China and central Vietnam. Populations from northern Vietnam showed varying levels of genetic variation, with low variation in populations near the Red River. Low genetic variation was found in populations of southern Vietnam. Analyses of population structure revealed that populations of northern Vietnam formed a distinct genetic cluster from populations sampled in China. Together with populations of central Vietnam, populations from northern Vietnam could be subdivided into five clusters, likely caused by mountain ranges and connected river systems. We propose that populations sampled in central Vietnam and on the western side of the Hoang Lien Son mountain range in northern Vietnam belong to the native distribution area and should be prioritised for conservation. Southern range edge populations in central Vietnam had especially high genetic diversity, with a high number of unique alleles and might be connected with core populations in northern Laos and southwest China. Southern Vietnamese populations are considered imported and not native.


Asunto(s)
Alelos , Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta , Musa/genética , Repeticiones de Microsatélite , Vietnam
18.
Ann Bot ; 127(6): 799-811, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33534902

RESUMEN

BACKGROUND AND AIMS: Internal seed morphological traits such as embryo characteristics and nutritive tissue can vary considerably within a plant lineage. These traits play a prominent role in germination processes and the success of seedling establishment, and are therefore under high selective pressure, especially in environments hostile to seedlings, such as arid, saline or highly dynamic habitats. We investigated the relationships of seed internal morphology and germination characteristics of 84 species of Amaranthaceae s.l., a family with numerous lineages that have adapted to stressful growing conditions. METHODS: We used seed cross-sections to assess embryo type and the ratios of embryo to seed surface and radicle to cotyledon length. Furthermore, seed mass, mean time to germination, habitat preferences and further plant traits such as C3 or C4 photosynthesis and life form were compiled for each species. Data were analysed using phylogenetic comparative methods. KEY RESULTS: We found embryo type (λ = 1), log seed mass (λ = 0.86) and the ratio of embryo to seed size (λ = 0.78) to be evolutionarily stable, with an annular embryo as ancestral in the family. Linked to shifts to the three derived embryos types (spiral, horseshoe-shaped and curved) is an increase in the ratio of root to cotyledon length and a reduction of nutritive tissue. We observed stabilizing selection towards seeds with relatively large embryos with longer radicles and less nutritive tissue that are able to germinate faster, especially in lineages with C4 photosynthesis and/or salt tolerance. CONCLUSIONS: We conclude that the evolutionary shift of nutrient storage from perisperm to embryo provides an ecological advantage in extreme environments, because it enables faster germination and seedling establishment. Furthermore, the evolutionary shift towards a higher ratio of root to cotyledon length especially in small-seeded Amaranthaceae growing in saline habitats can provide an ecological advantage for fast seedling establishment.


Asunto(s)
Amaranthaceae , Germinación , Filogenia , Plantones , Semillas
19.
New Phytol ; 229(6): 3573-3586, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205452

RESUMEN

Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum. We performed a meta-analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny. Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm-cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment. Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.


Asunto(s)
Germinación , Semillas , Latencia en las Plantas , Plantas , Temperatura
20.
Plants (Basel) ; 9(9)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967145

RESUMEN

Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges in collecting seeds from wild populations impact the quality of seed collections. It is, therefore, crucial to evaluate the viability of seeds from such collecting missions in order to improve the value of future seed collections. We evaluate the seed viability of 37 accessions of seven Musa species, collected from wild populations in Papua New Guinea, during two collecting missions. Seeds from one mission had already been stored in conventional storage (dried for four months at 15% relative humidity, 20 °C and stored for two months at 15% relative humdity, -20 °C), so a post-storage test was carried out. Seeds from the second mission were assessed freshly extracted and following desiccation. We used embryo rescue techniques to overcome the barrier of germinating in vivo Musa seeds. Seeds from the first mission had low viability (19 ± 27% mean and standard deviation) after storage for two months at 15% relative humidity and -20 °C. Musa balbisiana Colla seeds had significantly higher post-storage germination than other species (p < 0.01). Desiccation reduced germination of the seeds from the second collecting mission, from 84 ± 22% (at 16.7 ± 2.4% moisture content) to 36 ± 30% (at 2.4 ± 0.8% moisture content). There was considerable variation between and (to a lesser extent) within accessions, a proportion of individual seeds of all but one species (Musa ingens N.W.Simmonds) survived desiccation and sub-zero temperature storage. We identified that seeds from the basal end of the infructescence were less likely to be viable after storage (p < 0.001); and made morphological observations that identify seeds and infructescences with higher viability in relation to their developmental maturity. We highlight the need for research into seed eco-physiology of crop wild relatives in order to improve future collecting missions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...