Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Front Public Health ; 11: 1032385, 2023.
Article En | MEDLINE | ID: mdl-37427250

Objective: We evaluated the public health impact and return on investment of Belgium's pediatric immunization program (PIP) from both healthcare-sector and societal perspectives. Methods: We developed a decision analytic model for 6 vaccines routinely administered in Belgium for children aged 0-10 years: DTaP-IPV-HepB-Hib, DTaP-IPV, MMR, PCV, rotavirus, and meningococcal type C. We used separate decision trees to model each of the 11 vaccine-preventable pathogens: diphtheria, tetanus, pertussis, poliomyelitis, Haemophilus influenzae type b, measles, mumps, rubella, Streptococcus pneumoniae, rotavirus, and meningococcal type C; hepatitis B was excluded because of surveillance limitations. The 2018 birth cohort was followed over its lifetime. The model projected and compared health outcomes and costs with and without immunization (based on vaccine-era and pre-vaccine era disease incidence estimates, respectively), assuming that observed reductions in disease incidence were fully attributable to vaccination. For the societal perspective, the model included productivity loss costs associated with immunization and disease in addition to direct medical costs. The model estimated discounted cases averted, disease-related deaths averted, life-years gained, quality-adjusted life-years gained, costs (2020 euros), and an overall benefit-cost ratio. Scenario analyses considered alternate assumptions for key model inputs. Results: Across all 11 pathogens, we estimated that the PIP prevented 226,000 cases of infections and 200 deaths, as well as the loss of 7,000 life-years and 8,000 quality-adjusted life-years over the lifetime of a birth cohort of 118,000 children. The PIP was associated with discounted vaccination costs of €91 million from the healthcare-sector perspective and €122 million from the societal perspective. However, vaccination costs were more than fully offset by disease-related costs averted, with the latter amounting to a discounted €126 million and €390 million from the healthcare-sector and societal perspectives, respectively. As a result, pediatric immunization was associated with overall discounted savings of €35 million and €268 million from the healthcare-sector and societal perspectives, respectively; every €1 invested in childhood immunization resulted in approximately €1.4 in disease-related cost savings to the health system and €3.2 in cost savings from a societal perspective for Belgium's PIP. Estimates of the value of the PIP were most sensitive to changes in input assumptions for disease incidence, productivity losses due to disease-related mortality, and direct medical disease costs. Conclusion: Belgium's PIP, which previously had not been systematically assessed, provides large-scale prevention of disease-related morbidity and premature mortality, and is associated with net savings to health system and society. Continued investment in the PIP is warranted to sustain its positive public health and financial impact.


Immunization Programs , Public Health , Child , Humans , Belgium/epidemiology , Immunization , Cost-Benefit Analysis
3.
Front Immunol ; 13: 861251, 2022.
Article En | MEDLINE | ID: mdl-36275702

COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.


COVID-19 , Humans , Granzymes/metabolism , Perforin/metabolism , Interleukin-15/metabolism , Interleukin-18/metabolism , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism , Blood Platelets/metabolism , Integrin alpha1/metabolism , Killer Cells, Natural , Cytokines/metabolism , Chemokines/metabolism , Interleukin-12/metabolism , Antiviral Agents/metabolism , RNA/metabolism
4.
Arthritis Rheumatol ; 74(7): 1257-1270, 2022 07.
Article En | MEDLINE | ID: mdl-35243819

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is a systemic inflammatory disease with childhood onset. Systemic JIA is associated with neutrophilia, including immature granulocytes, potentially driven by the growth factor granulocyte-colony stimulating factor (G-CSF). This study was undertaken to investigate the role of G-CSF in the pathology of systemic JIA. METHODS: Injection of Freund's complete adjuvant (CFA) in BALB/c mice induces mild inflammation and neutrophilia in wild-type (WT) mice and a more pronounced disease, reminiscent to that of JIA patients, in interferon-γ-knockout (IFNγ-KO) mice. Extramedullary myelopoiesis was studied in CFA-immunized mice by single-cell RNA sequencing, and the effect of G-CSF receptor (G-CSFR) blockage on neutrophil development and systemic JIA pathology was evaluated. Additionally, plasma G-CSF levels were measured in patients. RESULTS: Both in systemic JIA patients and in a corresponding mouse model, plasma G-CSF levels were increased. In the mouse model, we demonstrated that G-CSF is responsible for the observed neutrophilia and extramedullary myelopoiesis and the induction of immature neutrophils and myeloid-derived suppressor-like cells. Administration of a G-CSFR antagonizing antibody blocked the maturation and differentiation of neutrophils in CFA-immunized mice. In IFNγ-KO mice, treatment was associated with almost complete inhibition of arthritis due to reduced neutrophilia and osteoclast formation. Disease symptoms were ameliorated, but slight increases in interleukin-6 (IL-6), tumor necrosis factor, and IL-17 were detected upon G-CSFR inhibition in the IFNγ-KO mice, and were associated with mild increases in weight loss, tail damage, and immature red blood cells. CONCLUSION: We describe the role of G-CSF in a mouse model of systemic JIA and suggest an important role for G-CSF-induced myelopoiesis and neutrophilia in regulating the development of arthritis.


Arthritis, Juvenile , Granulocyte Colony-Stimulating Factor , Myelopoiesis , Animals , Arthritis, Juvenile/immunology , Disease Models, Animal , Granulocyte Colony-Stimulating Factor/immunology , Interferon-gamma/genetics , Mice , Mice, Inbred BALB C , Neutrophils/metabolism
5.
BMC Infect Dis ; 21(1): 1150, 2021 Nov 11.
Article En | MEDLINE | ID: mdl-34758734

BACKGROUND: Varicella is a highly contagious infection that typically occurs in childhood. While most cases have a generally benign outcome, infection results in a considerable healthcare burden and serious complications may occur. OBJECTIVES: The objective of this study was to characterize the burden of varicella in a real-world primary care setting in Belgium, including the rate of varicella-related complications, medication management and general practitioner (GP) visits. METHODS: The study was a retrospective observational study using data from a longitudinal patient database in a primary care setting in Belgium. Patients with a GP visit and a varicella diagnosis between January 2016 and June 2019 were eligible and data one month prior and three months after the diagnosis were included. Outcomes included varicella-related complications, antibiotic use, antiviral use, and GP follow-up visits. Antibiotic use could be specified by class of antibiotic and linked to a diagnosis. Complications were identified based on concomitant diagnosis with varicella during the study period. RESULTS: 3,847 patients with diagnosis of varicella were included, with a mean age of 8.4 years and a comparable distribution of gender. 12.6% of patients with varicella had a concomitant diagnosis of a varicella-related complication. During the follow-up period, 27.3% of patients with varicella were prescribed antibiotics, either systemic (19.8%) and/or topical (10.3%). The highest rate of antibiotic prescriptions was observed in patients with complications (63.5%) and in patients younger than 1 year (41.8%). Nevertheless, 5.3% of the patients were prescribed antibiotics without a concomitant diagnosis of another infection. The most commonly prescribed systemic antibiotics were amoxicillin alone or combined with beta-lactamase inhibitor, and thiamphenicol. Fusidic acid and tobramycin were the most prescribed topical antibiotics. Antivirals were prescribed for 2.7% of the study population. 4.7% of the patients needed a follow-up visit with their GP. CONCLUSIONS: This study reports a substantial burden of varicella in a primary care setting in Belgium, with high rates of complications and antibiotic use.


Chickenpox , General Practitioners , Anti-Bacterial Agents/therapeutic use , Belgium/epidemiology , Chickenpox/drug therapy , Chickenpox/epidemiology , Child , Humans , Retrospective Studies
6.
J Immunol ; 203(12): 3339-3348, 2019 12 15.
Article En | MEDLINE | ID: mdl-31676671

Mice deficient in IFN-γ (IFN-γ knockout [KO] mice) develop a systemic inflammatory syndrome in response to CFA, in contrast to CFA-challenged wild-type (WT) mice who only develop a mild inflammation. Symptoms in CFA-challenged IFN-γ KO resemble systemic juvenile idiopathic arthritis (sJIA), a childhood immune disorder of unknown cause. Dysregulation of innate immune cells is considered to be important in the disease pathogenesis. In this study, we used this murine model to investigate the role of NK cells in the pathogenesis of sJIA. NK cells of CFA-challenged IFN-γ KO mice displayed an aberrant balance of activating and inhibitory NK cell receptors, lower expression of cytotoxic proteins, and a defective NK cell cytotoxicity. Depletion of NK cells (via anti-IL-2Rß and anti-Asialo-GM1 Abs) or blockade of the NK cell activating receptor NKG2D in CFA-challenged WT mice resulted in increased severity of systemic inflammation and appearance of sJIA-like symptoms. NK cells of CFA-challenged IFN-γ KO mice and from anti-NKG2D-treated mice showed defective degranulation capacities toward autologous activated immune cells, predominantly monocytes. This is in line with the increased numbers of activated inflammatory monocytes in these mice which was particularly reflected in the expression of CCR2, a chemokine receptor, and in the expression of Rae-1, a ligand for NKG2D. In conclusion, NK cells are defective in a mouse model of sJIA and impede disease development in CFA-challenged WT mice. Our findings point toward a regulatory role for NK cells in CFA-induced systemic inflammation via a NKG2D-dependent control of activated immune cells.


Arthritis, Juvenile/immunology , Arthritis, Juvenile/metabolism , Disease Susceptibility , Immunomodulation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Arthritis, Juvenile/pathology , Biomarkers , Cytotoxicity, Immunologic , Disease Models, Animal , Immunophenotyping , Interferon-gamma/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Models, Biological , NK Cell Lectin-Like Receptor Subfamily K/antagonists & inhibitors , Osteoclasts/immunology , Osteoclasts/metabolism
7.
Front Immunol ; 10: 3089, 2019.
Article En | MEDLINE | ID: mdl-32010140

Natural killer (NK) cells are innate immune lymphocytes with potent cytolytic and immune-regulatory activities. NK cells are well-known for their ability to kill infected and malignant cells in a fast and non-specific way without prior sensitization. For this purpose, NK cells are equipped with a set of cytotoxic molecules such as perforin and apoptosis-inducing proteins. NK cells also have the capacity to produce large amounts of cytokines and chemokines that synergize with their cytotoxic function and that ensure interaction with other immune cells. A less known feature of NK cells is their capacity to kill non-infected autologous cells, such as immature dendritic cells and activated T cells and monocytes. Via the release of large amounts of TNF-α and IFN-γ, NK cells may contribute to disease pathology. Conversely they may exert a regulatory role through secretion of immuno-regulatory cytokines such as GM-CSF, IL-13, and IL-10. Thus, NK cells may be important target and effector cells in the pathogenesis of autoinflammatory diseases, in particular in those disorders associated with a cytokine storm or in conditions where immune cells are highly activated. Key examples of such diseases are systemic juvenile idiopathic arthritis (sJIA) and its well-associated complication, macrophage activation syndrome (MAS). sJIA is a chronic childhood immune disorder of unknown etiology, characterized by arthritis and systemic inflammation, including a daily spiking fever and evanescent rash. MAS is a potentially fatal complication of autoimmune and autoinflammatory diseases, and most prevalently associated with sJIA. MAS is considered as a subtype of hemophagocytic lymphohistiocytosis (HLH), a systemic hyperinflammatory disorder characterized by defective cytotoxic pathways of cytotoxic T and NK cells. In this review, we describe the established features of NK cells and provide the results of a literature survey on the reported NK cell abnormalities in monogenic and multifactorial autoinflammatory disorders. Finally, we discuss the role of NK cells in the pathogenesis of sJIA and MAS.


Arthritis, Juvenile/immunology , Killer Cells, Natural/immunology , Macrophage Activation Syndrome/immunology , Arthritis, Juvenile/pathology , Child , Cytokines/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Killer Cells, Natural/pathology , Macrophage Activation Syndrome/pathology
8.
J Immunol ; 201(9): 2654-2663, 2018 11 01.
Article En | MEDLINE | ID: mdl-30266771

Systemic juvenile idiopathic arthritis (sJIA) is a childhood-onset immune disorder of unknown cause. One of the concepts is that the disease results from an inappropriate control of immune responses to an initially harmless trigger. In the current study, we investigated whether sJIA may be caused by defects in IL-10, a key cytokine in controlling inflammation. We used a translational approach, with an sJIA-like mouse model and sJIA patient samples. The sJIA mouse model relies on injection of CFA in IFN-γ-deficient BALB/c mice; corresponding wild type (WT) mice only develop a subtle and transient inflammatory reaction. Diseased IFN-γ-deficient mice showed a defective IL-10 production in CD4+ regulatory T cells, CD19+ B cells, and CD3-CD122+CD49b+ NK cells, with B cells as the major source of IL-10. In addition, neutralization of IL-10 in WT mice resulted in a chronic immune inflammatory disorder clinically and hematologically reminiscent of sJIA. In sJIA patients, IL-10 plasma levels were strikingly low as compared with proinflammatory mediators. Furthermore, CD19+ B cells from sJIA patients showed a decreased IL-10 production, both ex vivo and after in vitro stimulation. In conclusion, IL-10 neutralization in CFA-challenged WT mice converts a transient inflammatory reaction into a chronic disease and represents an alternative model for sJIA in IFN-γ-competent mice. Cell-specific IL-10 defects were observed in sJIA mice and patients, together with an insufficient IL-10 production to counterbalance their proinflammatory cytokines. Our data indicate that a defective IL-10 production contributes to the pathogenesis of sJIA.


Arthritis, Juvenile/immunology , Interleukin-10/biosynthesis , Animals , Arthritis, Juvenile/blood , Humans , Interleukin-10/blood , Interleukin-10/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout
9.
Eur J Immunol ; 48(9): 1506-1521, 2018 09.
Article En | MEDLINE | ID: mdl-30004580

The production of IL-10, a potent immunosuppressive cytokine, must be strictly regulated to ensure a balanced immune response. IFN-γ, a key cytokine in multiple immune processes and pathologies, is known as an inhibitor of IL-10 production by monocytes and macrophages, but also has some regulatory functions. In the present study, we explored the role of IFN-γ on Toll-like receptor (TLR)-induced IL-10 production in murine peritoneal and spleen cells and in human peripheral blood mononuclear cells. IFN-γ inhibited IL-10 production induced by TLR2, TLR3, TLR4 and TLR7/8 agonists, but stimulated IL-10 production when cells were triggered with CpG oligodeoxynucleotides, a specific TLR9 agonist. The stimulatory effect of IFN-γ on TLR9-induced IL-10 was restricted to B cells. In line with the increased IL-10, B cells stimulated with CpG and IFN-γ profoundly inhibited CD4 T cell proliferation. Further research into the mechanisms involved, revealed that the mitogen-activated protein kinases p38 and JNK are essential players in this stimulatory effect, and that the phosphatase MKP1 - an inhibitor of p38 and JNK activity - is downregulated after combined stimulation with IFN-γ and CpG. Our data may represent a novel immunoregulatory role of IFN-γ in B cells after triggering of TLR9, by stimulating IL-10 production.


B-Lymphocytes/immunology , CpG Islands/genetics , Interferon-gamma/metabolism , Interleukin-10/biosynthesis , JNK Mitogen-Activated Protein Kinases/metabolism , Toll-Like Receptor 9/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation/genetics , Cells, Cultured , Dual Specificity Phosphatase 1/biosynthesis , Humans , Interferon-gamma/genetics , Lymphocyte Activation/genetics , MAP Kinase Signaling System/genetics , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Signal Transduction/immunology
10.
Virol J ; 14(1): 240, 2017 12 19.
Article En | MEDLINE | ID: mdl-29258535

BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a rare immunological disorder caused by unbridled activation of T cells and macrophages, culminating in a life-threatening cytokine storm. A genetic and acquired subtype are distinguished, termed primary and secondary HLH, respectively. Clinical manifestations of both forms are frequently preceded by a viral infection, predominantly with herpesviruses. The exact role of the viral infection in the development of the hemophagocytic syndrome remains to be further elucidated. METHODS: We utilized a recently developed murine model of cytomegalovirus-associated secondary HLH and dissected the respective contributions of lytic viral replication and immunopathology in its pathogenesis. RESULTS: HLH-like disease only developed in cytomegalovirus-susceptible mouse strains unable to clear the virus, but the severity of symptoms was not correlated to the infectious viral titer. Lytic viral replication and sustained viremia played an essential part in the pathogenesis since abortive viral infection was insufficient to induce a full-blown HLH-like syndrome. Nonetheless, a limited set of symptoms, in particular anemia, thrombocytopenia and elevated levels of soluble CD25, appeared less dependent of the viral replication but rather mediated by the host's immune response, as corroborated by immunosuppressive treatment of infected mice with dexamethasone. CONCLUSION: Both virus-mediated pathology and immunopathology cooperate in the pathogenesis of full-blown virus-associated secondary HLH and are closely entangled. A certain level of viremia appears necessary to elicit the characteristic HLH-like symptoms in the model.


Disease Models, Animal , Lymphohistiocytosis, Hemophagocytic/physiopathology , Lymphohistiocytosis, Hemophagocytic/virology , Muromegalovirus/physiology , Virus Diseases/physiopathology , Virus Replication/physiology , Animals , Antiviral Agents/pharmacology , Cidofovir , Cytosine/analogs & derivatives , Cytosine/pharmacology , Dexamethasone/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Interleukin-2 Receptor alpha Subunit/drug effects , Interleukin-2 Receptor alpha Subunit/immunology , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Organophosphonates/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Toll-Like Receptor 3/agonists , Toll-Like Receptor 3/physiology , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/physiology , Virus Replication/drug effects
11.
Arthritis Rheumatol ; 69(1): 213-224, 2017 01.
Article En | MEDLINE | ID: mdl-27696741

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is an immunoinflammatory disease characterized by arthritis and systemic manifestations. The role of natural killer (NK) cells in the pathogenesis of systemic JIA remains unclear. The purpose of this study was to perform a comprehensive analysis of NK cell phenotype and functionality in patients with systemic JIA. METHODS: Transcriptional alterations specific to NK cells were investigated by RNA sequencing of highly purified NK cells from 6 patients with active systemic JIA and 6 age-matched healthy controls. Cytokines (NK cell-stimulating and others) were quantified in plasma samples (n = 18). NK cell phenotype and cytotoxic activity against tumor cells were determined (n = 10), together with their interferon-γ (IFNγ)-producing function (n = 8). RESULTS: NK cells from the systemic JIA patients showed an altered gene expression profile compared to cells from the healthy controls, with enrichment of immunoinflammatory pathways, increased expression of innate genes including TLR4 and S100A9, and decreased expression of immune-regulating genes such as IL10RA and GZMK. In the patients' plasma, interleukin-18 (IL-18) levels were increased, and a decreased ratio of IFNγ to IL-18 was observed. NK cells from the patients exhibited specific alterations in the balance of inhibitory and activating receptors, with decreased killer cell lectin-like receptor G1 and increased NKp44 expression. Although NK cells from the patients showed increased granzyme B expression, consistent with intact cytotoxicity and degranulation against a tumor cell line, decreased granzyme K expression in CD56bright NK cells and defective IL-18-induced IFNγ production and signaling were demonstrated. CONCLUSION: NK cells are active players in the inflammatory environment typical of systemic JIA. Although their cytotoxic function is globally intact, subtle defects in NK-related pathways, such as granzyme K expression and IL-18-driven IFNγ production, may contribute to the immunoinflammatory dysregulation in this disease.


Arthritis, Juvenile/immunology , Granzymes , Interferon-gamma , Killer Cells, Natural/physiology , Arthritis, Juvenile/genetics , Cells, Cultured , Gene Expression , Granzymes/genetics , Humans , Interferon-gamma/genetics , Phenotype
...