Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 135
1.
Theranostics ; 14(7): 2656-2674, 2024.
Article En | MEDLINE | ID: mdl-38773967

Rationale: AXL expression has been identified as a prognostic factor in acute myeloid leukemia (AML) and is detectable in approximately 50% of AML patients. In this study, we developed AXL-specific single domain antibodies (sdAbs), cross-reactive for both mouse and human AXL protein, to non-invasively image and treat AXL-expressing cancer cells. Methods: AXL-specific sdAbs were induced by immunizing an alpaca with mouse and human AXL proteins. SdAbs were characterized using ELISA, flow cytometry, surface plasmon resonance and the AlphaFold2 software. A lead compound was selected and labeled with 99mTc for evaluation as a diagnostic tool in mouse models of human (THP-1 cells) or mouse (C1498 cells) AML using SPECT/CT imaging. For therapeutic purposes, the lead compound was fused to a mouse IgG2a-Fc tail and in vitro functionality tests were performed including viability, apoptosis and proliferation assays in human AML cell lines and primary patient samples. Using these in vitro models, its anti-tumor effect was evaluated as a single agent, and in combination with standard of care agents venetoclax or cytarabine. Results: Based on its cell binding potential, cross-reactivity, nanomolar affinity and GAS6/AXL blocking capacity, we selected sdAb20 for further evaluation. Using SPECT/CT imaging, we observed tumor uptake of 99mTc-sdAb20 in mice with AXL-positive THP-1 or C1498 tumors. In THP-1 xenografts, an optimized protocol using pre-injection of cold sdAb20-Fc was required to maximize the tumor-to-background signal. Besides its diagnostic value, we observed a significant reduction in tumor cell proliferation and viability using sdAb20-Fc in vitro. Moreover, combining sdAb20-Fc and cytarabine synergistically induced apoptosis in human AML cell lines, while these effects were less clear when combined with venetoclax. Conclusions: Because of their diagnostic potential, sdAbs could be used to screen patients eligible for AXL-targeted therapy and to follow-up AXL expression during treatment and disease progression. When fused to an Fc-domain, sdAbs acquire additional therapeutic properties that can lead to a multidrug approach for the treatment of AXL-positive cancer patients.


Axl Receptor Tyrosine Kinase , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Single-Domain Antibodies , Animals , Humans , Mice , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptor Protein-Tyrosine Kinases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Female , Xenograft Model Antitumor Assays , THP-1 Cells
2.
Haematologica ; 109(1): 256-271, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37470139

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance. By analyzing publicly available gene expression profiling data, MAT2A was found to be more highly expressed in patient-derived myeloma cells than in normal bone marrow plasma cells. The expression of MAT2A correlated with an unfavorable prognosis in relapsed patients. MAT2A inhibition in MM cells led to a reduction in intracellular SAM levels, which resulted in impaired cell viability and proliferation, and induction of apoptosis. Further mechanistic investigation demonstrated that MAT2A inhibition inactivated the mTOR-4EBP1 pathway, accompanied by a decrease in protein synthesis. MAT2A targeting in vivo with the small molecule compound FIDAS-5 was able to significantly reduce tumor burden in the 5TGM1 model. Finally, we found that MAT2A inhibition can synergistically enhance the anti-MM effect of the standard-of-care agent bortezomib on both MM cell lines and primary human CD138+ MM cells. In summary, we demonstrate that MAT2A inhibition reduces MM cell proliferation and survival by inhibiting mTOR-mediated protein synthesis. Moreover, our findings suggest that the MAT2A inhibitor FIDAS-5 could be a novel compound to improve bortezomib-based treatment of MM.


Multiple Myeloma , S-Adenosylmethionine , Humans , S-Adenosylmethionine/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Bortezomib/pharmacology , Prognosis , TOR Serine-Threonine Kinases , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism
3.
Blood Cancer J ; 13(1): 188, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110349

Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.


Calgranulin B , Leukemia, Myeloid, Acute , Humans , Calgranulin B/genetics , Calgranulin B/pharmacology , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , TOR Serine-Threonine Kinases/therapeutic use
4.
Front Immunol ; 14: 1286700, 2023.
Article En | MEDLINE | ID: mdl-38035078

Background: Immunotherapeutic targets in multiple myeloma (MM) have variable expression height and are partly expressed in subfractions of patients only. With increasing numbers of available compounds, strategies for appropriate choice of targets (combinations) are warranted. Simultaneously, risk assessment is advisable as patient's life expectancy varies between months and decades. Methods: We first assess feasibility of RNA-sequencing in a multicenter trial (GMMG-MM5, n=604 patients). Next, we use a clinical routine cohort of untreated symptomatic myeloma patients undergoing autologous stem cell transplantation (n=535, median follow-up (FU) 64 months) to perform RNA-sequencing, gene expression profiling (GEP), and iFISH by ten-probe panel on CD138-purified malignant plasma cells. We subsequently compare target expression to plasma cell precursors, MGUS (n=59), asymptomatic (n=142) and relapsed (n=69) myeloma patients, myeloma cell lines (n=26), and between longitudinal samples (MM vs. relapsed MM). Data are validated using the independent MMRF CoMMpass-cohort (n=767, FU 31 months). Results: RNA-sequencing is feasible in 90.8% of patients (GMMG-MM5). Actionable immune-oncological targets (n=19) can be divided in those expressed in all normal and >99% of MM-patients (CD38, SLAMF7, BCMA, GPRC5D, FCRH5, TACI, CD74, CD44, CD37, CD79B), those with expression loss in subfractions of MM-patients (BAFF-R [81.3%], CD19 [57.9%], CD20 [82.8%], CD22 [28.4%]), aberrantly expressed in MM (NY-ESO1/2 [12%], MUC1 [12.7%], CD30 [4.9%], mutated BRAF V600E/K [2.1%]), and resistance-conveying target-mutations e.g., against part but not all BCMA-directed treatments. Risk is assessable regarding proliferation, translated GEP- (UAMS70-, SKY92-, RS-score) and de novo (LfM-HRS) defined risk scores. LfM-HRS delineates three groups of 40%, 38%, and 22% of patients with 5-year and 12-year survival rates of 84% (49%), 67% (18%), and 32% (0%). R-ISS and RNA-sequencing identify partially overlapping patient populations, with R-ISS missing, e.g., 30% (22/72) of highly proliferative myeloma. Conclusion: RNA-sequencing based assessment of risk and targets for first choice treatment is possible in clinical routine.


Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , RNA , B-Cell Maturation Antigen , Transplantation, Autologous
5.
Cell Rep ; 42(5): 112475, 2023 05 30.
Article En | MEDLINE | ID: mdl-37167967

Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.


Cancer-Associated Fibroblasts , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Immunosuppression Therapy , Stromal Cells/metabolism , Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
6.
J Pathol ; 260(2): 112-123, 2023 06.
Article En | MEDLINE | ID: mdl-36807305

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Antineoplastic Agents , Metformin , Multiple Myeloma , Humans , Metformin/pharmacology , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Cell Line, Tumor
7.
J Immunother Cancer ; 11(1)2023 01.
Article En | MEDLINE | ID: mdl-36650020

BACKGROUND: Immunotherapy emerged as a promising treatment option for multiple myeloma (MM) patients. However, therapeutic efficacy can be hampered by the presence of an immunosuppressive bone marrow microenvironment including myeloid cells. S100A9 was previously identified as a key regulator of myeloid cell accumulation and suppressive activity. Tasquinimod, a small molecule inhibitor of S100A9, is currently in a phase Ib/IIa clinical trial in MM patients (NCT04405167). We aimed to gain more insights into its mechanisms of action both on the myeloma cells and the immune microenvironment. METHODS: We analyzed the effects of tasquinimod on MM cell viability, cell proliferation and downstream signaling pathways in vitro using RNA sequencing, real-time PCR, western blot analysis and multiparameter flow cytometry. Myeloid cells and T cells were cocultured at different ratios to assess tasquinimod-mediated immunomodulatory effects. The in vivo impact on immune cells (myeloid cell subsets, macrophages, dendritic cells), tumor load, survival and bone disease were elucidated using immunocompetent 5TMM models. RESULTS: Tasquinimod treatment significantly decreased myeloma cell proliferation and colony formation in vitro, associated with an inhibition of c-MYC and increased p27 expression. Tasquinimod-mediated targeting of the myeloid cell population resulted in increased T cell proliferation and functionality in vitro. Notably, short-term tasquinimod therapy of 5TMM mice significantly increased the total CD11b+ cells and shifted this population toward a more immunostimulatory state, which resulted in less myeloid-mediated immunosuppression and increased T cell activation ex vivo. Tasquinimod significantly reduced the tumor load and increased the trabecular bone volume, which resulted in prolonged overall survival of MM-bearing mice in vivo. CONCLUSION: Our study provides novel insights in the dual therapeutic effects of the immunomodulator tasquinimod and fosters its evaluation in combination therapy trials for MM patients.


Bone Resorption , Multiple Myeloma , Quinolones , Animals , Mice , Bone Resorption/metabolism , Bone Resorption/pathology , Cell Proliferation , Immunosuppressive Agents/pharmacology , Multiple Myeloma/pathology , Myeloid Cells/metabolism , Quinolones/pharmacology , Quinolones/therapeutic use , Quinolones/metabolism , Tumor Microenvironment , Humans
8.
J Pathol ; 259(1): 69-80, 2023 01.
Article En | MEDLINE | ID: mdl-36245401

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called ß-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the ß2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the ß2 -adrenergic receptor (ß2 AR) using either selective or non-selective ß-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the ß2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of ß1 -adrenergic receptors. Combining ß2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of ß2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective ß-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-1/therapeutic use , Signal Transduction , Bortezomib/pharmacology , Bortezomib/therapeutic use , Apoptosis
9.
Front Immunol ; 13: 1016059, 2022.
Article En | MEDLINE | ID: mdl-36304465

The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function. The phenotype, function and prognostic value of MDSC in hematological cancers has been intensively studied; however, the therapeutic targeting of this cell population remains challenging and needs further investigation. In this review, we will summarize the prognostic value of MDSC and the different attempts to target MDSC (or subtypes of MDSC) in hematological cancers. We will discuss the benefits, challenges and opportunities of using MDSC-targeting approaches, aiming to enhance anti-tumor immune responses of currently used cellular and non-cellular immunotherapies.


Hematologic Neoplasms , Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Prognosis , Monocytes , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Tumor Microenvironment
10.
Exp Hematol Oncol ; 11(1): 49, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36050788

Cancer cells are well-known for their capacity to adapt their metabolism to their increasing energy demands which is necessary for tumor progression. This is no different for Multiple Myeloma (MM), a hematological cancer which develops in the bone marrow (BM), whereby the malignant plasma cells accumulate and impair normal BM functions. It has become clear that the hypoxic BM environment contributes to metabolic rewiring of the MM cells, including changes in metabolite levels, increased/decreased activity of metabolic enzymes and metabolic shifts. These adaptations will lead to a pro-tumoral environment stimulating MM growth and drug resistance In this review, we discuss the identified metabolic changes in MM and the BM microenvironment and summarize how these identified changes have been targeted (by inhibitors, genetic approaches or deprivation studies) in order to block MM progression and survival.

11.
Front Oncol ; 12: 979569, 2022.
Article En | MEDLINE | ID: mdl-36059621

Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called 'epimutations' have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.

12.
Front Cell Dev Biol ; 10: 879057, 2022.
Article En | MEDLINE | ID: mdl-35757005

Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.

13.
Front Immunol ; 13: 799636, 2022.
Article En | MEDLINE | ID: mdl-35634329

Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.


Melanoma, Experimental , Skin Neoplasms , Animals , DNA Methylation , Histones/metabolism , Mice , Models, Theoretical , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Vaccination
14.
Cancer Lett ; 535: 215649, 2022 06 01.
Article En | MEDLINE | ID: mdl-35315341

Multiple myeloma (MM) cells derive proliferative signals from the bone marrow (BM) microenvironment via exosomal crosstalk. Therapeutic strategies targeting this crosstalk are still lacking. Bortezomib resistance in MM cells is linked to elevated expression of xCT (the subunit of system Xc-). Extracellular glutamate released by system Xc- can bind to glutamate metabotropic receptor (GRM) 3, thereby upregulating Rab27-dependent vesicular trafficking. Since Rab27 is also involved in exosome biogenesis, we aimed to investigate the role of system Xc- in exosomal communication between BM stromal cells (BMSCs) and MM cells. We observed that expression of xCT and GRMs was increased after bortezomib treatment in both BMSCs and MM cells. Secretion of glutamate and exosomes was simultaneously enhanced which could be countered by inhibition of system Xc- or GRMs. Moreover, glutamate supplementation increased exosome secretion by increasing expression of Alix, TSG101, Rab27a/b and VAMP7. Importantly, the system Xc- inhibitor sulfasalazine reduced BMSC-induced resistance to bortezomib in MM cells in vitro and enhanced its anti-MM effects in vivo. These findings suggest that system Xc- plays an important role within the BM and could be a potential target in MM.


Exosomes , Multiple Myeloma , Apoptosis , Bone Marrow/metabolism , Bortezomib/pharmacology , Bortezomib/therapeutic use , Exosomes/metabolism , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Tumor Microenvironment
15.
Blood ; 140(23): 2429-2442, 2022 12 08.
Article En | MEDLINE | ID: mdl-35271699

Multiple myeloma (MM) remains an incurable plasma cell malignancy that develops in the bone marrow (BM). This BM is partially responsible for protecting the MM cells against current standard-of-care therapies and for accommodating MM-related symptoms such as bone resorption and immune suppression. Increasing evidence has implicated extracellular vesicles (EV), including exosomes in the different processes within the BM. Exosomes are <150-nm-sized vesicles secreted by different cell types including MM cells. These vesicles contain protein and RNA cargo that they deliver to the recipient cell. In this way, they have been implicated in MM-related processes including osteolysis, angiogenesis, immune suppression, and drug resistance. Targeting exosome secretion could therefore potentially block these different processes. In this review, we will summarize the current findings of exosome-related processes in the BM and describe not only the current treatment strategies to counter them but also how exosomes can be harnessed to deliver toxic payloads. Finally, an overview of the different clinical studies that investigate EV cargo as potential MM biomarkers in liquid biopsies will be discussed.


Multiple Myeloma , Humans , Multiple Myeloma/therapy
16.
J Exp Clin Cancer Res ; 41(1): 45, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-35105345

BACKGROUND: Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its' role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. METHODS: Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. RESULTS: We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. CONCLUSIONS: This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.


Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Multiple Myeloma/drug therapy , Protein Synthesis Inhibitors/therapeutic use , Pyrroline Carboxylate Reductases/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Cell Proliferation , Humans , Mice , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Protein Synthesis Inhibitors/pharmacology , Pyrroline Carboxylate Reductases/pharmacology , Survival Analysis
17.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article En | MEDLINE | ID: mdl-35055096

Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.


Dendritic Cells/immunology , Immunotherapy , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Animals , Antigens, Neoplasm , Biomarkers , Cancer Vaccines , Cell Plasticity/immunology , Clinical Decision-Making , Combined Modality Therapy , Dendritic Cells/metabolism , Disease Management , Disease Susceptibility , Humans , Immunomodulation , Immunotherapy/adverse effects , Immunotherapy/methods , Multiple Myeloma/diagnosis , Multiple Myeloma/mortality , Treatment Outcome , Vaccination
18.
Mol Cancer Ther ; 21(1): 159-169, 2022 01.
Article En | MEDLINE | ID: mdl-34667109

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the ß--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


Multiple Myeloma/drug therapy , Multiple Myeloma/radiotherapy , Precision Medicine/methods , Radioisotopes/therapeutic use , Single-Domain Antibodies/therapeutic use , Animals , Female , Humans , Mice , Radioisotopes/pharmacology , Single-Domain Antibodies/pharmacology
19.
Cancer Biol Med ; 2021 May 07.
Article En | MEDLINE | ID: mdl-33960177

OBJECTIVE: Myeloma bone disease (MBD) is the most common complication of multiple myeloma (MM). Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease. However, the mechanism of C3a/C4a in osteoclasts MM patients remains unclear. METHODS: The formation and function of osteoclasts were analyzed after adding C3a/C4a in vitro. RNA-seq analysis was used to screen the potential pathways affecting osteoclasts, and the results were verified by Western blot, qRT-PCR, and pathway inhibitors. RESULTS: The osteoclast area per view induced by 1 µg/mL (mean ± SD: 50.828 ± 12.984%) and 10 µg/mL (53.663 ± 12.685%) of C3a was significantly increased compared to the control group (0 µg/mL) (34.635 ± 8.916%) (P < 0.001 and P < 0.001, respectively). The relative mRNA expressions of genes, OSCAR/TRAP/RANKL/cathepsin K, induced by 1 µg/mL (median: 5.041, 3.726, 1.638, and 4.752, respectively) and 10 µg/mL (median: 5.140, 3.702, 2.250, and 5.172, respectively) of C3a was significantly increased compared to the control group (median: 3.137, 2.004, 0.573, and 2.257, respectively) (1 µg/mL P = 0.001, P = 0.003, P < 0.001, and P = 0.008, respectively; 10 µg/mL: P < 0.001, P = 0.019, P < 0.001, and P = 0.002, respectively). The absorption areas of the osteoclast resorption pits per view induced by 1 µg/mL (mean ± SD: 51.464 ± 11.983%) and 10 µg/mL (50.219 ± 12.067%) of C3a was also significantly increased (33.845 ± 8.331%) (P < 0.001 and P < 0.001, respectively) compared to the control. There was no difference between the C4a and control groups. RNA-seq analysis showed that C3a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase (PI3K) signaling pathway. The relative expressions of PIK3CA/phosphoinositide dependent kinase-1 (PDK1)/serum and glucocorticoid inducible protein kinases (SGK3) genes and PI3K/PDK1/p-SGK3 protein in the C3a group were significantly higher than in the control group. The activation role of C3a in osteoclasts of MM patients was reduced by the SGK inhibitor (EMD638683). CONCLUSIONS: C3a activated osteoclasts by regulating the PI3K/PDK1/SGK3 pathways in MM patients, which was reduced using a SGK inhibitor. Overall, our results identified potential therapeutic targets and strategies for MBD patients.

20.
Front Immunol ; 12: 652160, 2021.
Article En | MEDLINE | ID: mdl-33859645

Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/therapy , Tumor Escape/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy/methods , DNA Methylation/drug effects , DNA Methylation/immunology , Drug Synergism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy, Adoptive/methods , Neoplasms/genetics , Neoplasms/immunology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/immunology , Receptors, Chimeric Antigen/immunology , Treatment Outcome , Tumor Escape/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
...