Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709176

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Cardiac Myosins , Cardiomyopathy, Dilated , Ventricular Myosins , Animals , Humans , Actins/metabolism , Actins/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Mutation , Myocardial Contraction/physiology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism
2.
bioRxiv ; 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38105932

Dilated cardiomyopathy (DCM) is characterized by impaired cardiac function due to myocardial hypo-contractility and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super relaxed" state (SRX), which is further stabilized by a structural state known as the "Interacting Heads Motif" (IHM). Therefore, hypo-contractility of DCM myocardium may result from: 1) reduced function of individual myosin, and/or; 2) decreased myosin availability due to increased IHM/SRX stabilization. To define the molecular impact of an established DCM myosin mutation, E525K, we characterized the biochemical and mechanical activity of wild-type (WT) and E525K human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. Single-headed (S1) and a short-tailed, double-headed (2HEP) myosin constructs exhibited low (~10%) IHM/SRX content, actin-activated ATPase activity of ~5s-1 and fast velocities in unloaded motility assays (~2000nm/s). Double-headed, longer-tailed (15HEP, 25HEP) constructs exhibited higher IHM/SRX content (~90%), and reduced actomyosin ATPase (<1s-1) and velocity (~800nm/s). A simple analytical model suggests that reduced velocities may be attributed to IHM/SRXdependent sequestration of myosin heads. Interestingly, the E525K 15HEP and 25HEP mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength. However, at higher ionic strength, the E525K mutation stabilized the IHM/SRX state. Therefore, the E525K-associated DCM human cardiac hypo-contractility may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability.

3.
Biophys J ; 121(12): 2449-2460, 2022 06 21.
Article En | MEDLINE | ID: mdl-35591788

Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human ß-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of ß-cardiac myosin contractility.


Cardiac Myosins , Ventricular Myosins , Cardiac Myosins/metabolism , Carrier Proteins/metabolism , Humans , Myocardium/metabolism , Myosins/metabolism , Phosphorylation , Ventricular Myosins/analysis , Ventricular Myosins/metabolism
4.
J Biol Chem ; 298(3): 101688, 2022 03.
Article En | MEDLINE | ID: mdl-35143838

A range of cargo adaptor proteins are known to recruit cytoskeletal motors to distinct subcellular compartments. However, the structural impact of cargo recruitment on motor function is poorly understood. Here, we dissect the multimodal regulation of myosin VI activity through the cargo adaptor GAIP-interacting protein, C terminus (GIPC), whose overexpression with this motor in cancer enhances cell migration. Using a range of biophysical techniques, including motility assays, FRET-based conformational sensors, optical trapping, and DNA origami-based cargo scaffolds to probe the individual and ensemble properties of GIPC-myosin VI motility, we report that the GIPC myosin-interacting region (MIR) releases an autoinhibitory interaction within myosin VI. We show that the resulting conformational changes in the myosin lever arm, including the proximal tail domain, increase the flexibility of the adaptor-motor linkage, and that increased flexibility correlates with faster actomyosin association and dissociation rates. Taken together, the GIPC MIR-myosin VI interaction stimulates a twofold to threefold increase in ensemble cargo speed. Furthermore, the GIPC MIR-myosin VI ensembles yield similar cargo run lengths as forced processive myosin VI dimers. We conclude that the emergent behavior from these individual aspects of myosin regulation is the fast, processive, and smooth cargo transport on cellular actin networks. Our study delineates the multimodal regulation of myosin VI by the cargo adaptor GIPC, while highlighting linkage flexibility as a novel biophysical mechanism for modulating cellular cargo motility.


Adaptor Proteins, Signal Transducing , Myosin Heavy Chains , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Myosin Heavy Chains/metabolism , Myosins/genetics , Myosins/metabolism
5.
J Biol Chem ; 296: 100232, 2021.
Article En | MEDLINE | ID: mdl-33372034

Myosin VI ensembles on endocytic cargo facilitate directed transport through a dense cortical actin network. Myosin VI is recruited to clathrin-coated endosomes via the cargo adaptor Dab2. Canonically, it has been assumed that the interactions between a motor and its cargo adaptor are stable. However, it has been demonstrated that the force generated by multiple stably attached motors disrupts local cytoskeletal architecture, potentially compromising transport. In this study, we demonstrate that dynamic multimerization of myosin VI-Dab2 complexes facilitates cargo processivity without significant reorganization of cortical actin networks. Specifically, we find that Dab2 myosin interacting region (MIR) binds myosin VI with a moderate affinity (184 nM) and single-molecule kinetic measurements demonstrate a high rate of turnover (1 s-1) of the Dab2 MIR-myosin VI interaction. Single-molecule motility shows that saturating Dab2-MIR concentration (2 µM) promotes myosin VI homodimerization and processivity with run lengths comparable with constitutive myosin VI dimers. Cargo-mimetic DNA origami scaffolds patterned with Dab2 MIR-myosin VI complexes are weakly processive, displaying sparse motility on single actin filaments and "stop-and-go" motion on a cellular actin network. On a minimal actin cortex assembled on lipid bilayers, unregulated processive movement by either constitutive myosin V or VI dimers results in actin remodeling and foci formation. In contrast, Dab2 MIR-myosin VI interactions preserve the integrity of a minimal cortical actin network. Taken together, our study demonstrates the importance of dynamic motor-cargo association in enabling cargo transportation without disrupting cytoskeletal organization.


Actin Cytoskeleton/genetics , Adaptor Proteins, Signal Transducing/chemistry , Apoptosis Regulatory Proteins/chemistry , Multiprotein Complexes/chemistry , Myosin Heavy Chains/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/ultrastructure , Clathrin-Coated Vesicles/chemistry , Clathrin-Coated Vesicles/genetics , Cytoskeleton/chemistry , Cytoskeleton/genetics , Cytoskeleton/ultrastructure , Endocytosis/genetics , Endosomes/genetics , Humans , Kinetics , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Myosin Heavy Chains/genetics , Myosin Heavy Chains/ultrastructure , Phosphatidylserines/genetics , Protein Binding/genetics , Protein Multimerization/genetics , Single Molecule Imaging
...