Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virulence ; 15(1): 2327883, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38465639

RESUMEN

Cryptococcus neoformans is an environmental yeast that primarily affects immunocompromised individuals, causing respiratory infections and life-threatening meningoencephalitis. Treatment is complicated by limited antifungal options, with concerns such as adverse effects, dose-limiting toxicity, blood-brain barrier permeability, and resistance development, emphasizing the critical need to optimize and expand current treatment options against invasive cryptococcosis. Galleria mellonella larvae have been introduced as an ethical intermediate for in vivo testing, bridging the gap between in vitro antifungal screening and mouse studies. However, current infection readouts in G. mellonella are indirect, insensitive, or invasive, which hampers the full potential of the model. To address the absence of a reliable non-invasive method for tracking infection, we longitudinally quantified the cryptococcal burden in G. mellonella using bioluminescence imaging (BLI). After infection with firefly luciferase-expressing C. neoformans, the resulting bioluminescence signal was quantitatively validated using colony-forming unit analysis. Longitudinal comparison of BLI to health and survival analysis revealed increased sensitivity of BLI in discriminating cryptococcal burden during early infection. Furthermore, BLI improved the detection of treatment efficacy using first-line antifungals, thereby benchmarking this model for antifungal testing. In conclusion, we introduced BLI as a real-time, quantitative readout of cryptococcal burden in G. mellonella over time, enabling more sensitive and reliable antifungal screening.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Mariposas Nocturnas , Animales , Antifúngicos/uso terapéutico , Criptococosis/microbiología , Larva/microbiología , Mariposas Nocturnas/microbiología
2.
Nat Commun ; 14(1): 7202, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938547

RESUMEN

Microglia provide protection against a range of brain infections including bacteria, viruses and parasites, but how these glial cells respond to fungal brain infections is poorly understood. We investigated the role of microglia in the context of cryptococcal meningitis, the most common cause of fungal meningitis in humans. Using a series of transgenic- and chemical-based microglia depletion methods we found that, contrary to their protective role during other infections, loss of microglia did not affect control of Cryptococcus neoformans brain infection which was replicated with several fungal strains. At early time points post-infection, we found that microglia depletion lowered fungal brain burdens, which was related to intracellular residence of C. neoformans within microglia. Further examination of extracellular and intracellular fungal populations revealed that C. neoformans residing in microglia were protected from copper starvation, whereas extracellular yeast upregulated copper transporter CTR4. However, the degree of copper starvation did not equate to fungal survival or abundance of metals within different intracellular niches. Taken together, these data show how tissue-resident myeloid cells may influence fungal phenotype in the brain but do not provide protection against this infection, and instead may act as an early infection reservoir.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Humanos , Meningitis Criptocócica/prevención & control , Microglía , Cobre , Neuroglía
3.
Microbiol Spectr ; 11(4): e0082523, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37466453

RESUMEN

Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.


Asunto(s)
Antifúngicos , Mariposas Nocturnas , Humanos , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergillus fumigatus , Triazoles/farmacología , Reproducibilidad de los Resultados , Farmacorresistencia Fúngica , Mariposas Nocturnas/microbiología , Larva/microbiología , Pruebas de Sensibilidad Microbiana
4.
Methods Mol Biol ; 2667: 197-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37145286

RESUMEN

Aspergillus fumigatus and Cryptococcus neoformans species infections are two of the most common life-threatening fungal infections in the immunocompromised population. Acute invasive pulmonary aspergillosis (IPA) and meningeal cryptococcosis are the most severe forms affecting patients with elevated associated mortality rates despite current treatments. As many unanswered questions remain concerning these fungal infections, additional research is greatly needed not only in clinical scenarios but also under controlled preclinical experimental settings to increase our understanding concerning their virulence, host-pathogen interactions, infection development, and treatments. Preclinical animal models are powerful tools to gain more insight into some of these needs. However, assessment of disease severity and fungal burden in mouse models of infection are often limited to less sensitive, single-time, invasive, and variability-prone techniques such as colony-forming unit counting. These issues can be overcome by in vivo bioluminescence imaging (BLI). BLI is a noninvasive tool that provides longitudinal dynamic visual and quantitative information on the fungal burden from the onset of infection and potential dissemination to different organs throughout the development of disease in individual animals. Hereby, we describe an entire experimental pipeline from mouse infection to BLI acquisition and quantification, readily available to researchers to provide a noninvasive, longitudinal readout of fungal burden and dissemination throughout the course of infection development, which can be applied for preclinical studies into pathophysiology and treatment of IPA and cryptococcosis in vivo.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Aspergilosis Pulmonar Invasiva , Micosis , Ratones , Animales , Criptococosis/diagnóstico por imagen , Criptococosis/microbiología , Aspergillus fumigatus , Diagnóstico por Imagen , Modelos Animales de Enfermedad
5.
Methods Mol Biol ; 2667: 211-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37145287

RESUMEN

Pulmonary mycoses are an important threat for immunocompromised patients, and although current treatments are effective, they suffer from multiple limitations and fail to further reduce mortality. With the increasing immunocompromised population and increased antifungal resistance, fungal infection research is more relevant than ever. In preclinical respiratory fungal infection research, animal models are indispensable. However, too often researchers still rely on endpoint measurements to assess fungal burden while the dynamics of disease progression are left undiscovered. To open up this "black box", microcomputed tomography (µCT) can be implemented to longitudinally visualize lung pathology in a noninvasive way and to quantify µCT-image derived biomarkers. That way, disease onset, progression, and responsiveness to treatment can be followed up with high resolution spatially and temporally in individual mice, increasing statistical power. Here, we describe a general method for the use of low-dose high-resolution µCT to longitudinally visualize and quantify lung pathology in mouse models of respiratory fungal infections, applied to mouse models of aspergillosis and cryptococcosis.


Asunto(s)
Aspergilosis , Micosis , Animales , Ratones , Microtomografía por Rayos X/métodos , Micosis/tratamiento farmacológico , Inflamación/patología , Aspergilosis/tratamiento farmacológico , Pulmón/diagnóstico por imagen , Pulmón/patología , Antifúngicos/uso terapéutico
6.
Sci Total Environ ; 843: 157046, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779717

RESUMEN

RATIONALE: Exercise-induced bronchoconstriction (EIB) is defined as acute narrowing of the airways during or immediately after exercise. EIB has a high prevalence in elite swimmers probably due to the high ventilation rate and exposure to the chlorine by-products. It is still puzzling which pathophysiological mechanisms drive EIB. OBJECTIVE: In this study, we evaluated airway hyperreactivity, permeability, integrity and inflammation in a murine swimmers EIB model with and without chlorine exposure. METHODS: Mice performed a 3-week swimming protocol in a swimming pool with counter current. Three hours after the last swimming session, airway hyperreactivity to methacholine was assessed. Cytokine levels and cellular differential analysis was performed in BAL fluid. Airway permeability and tight junction expression was measured in serum and lung tissue. T-, B-, dendritic and innate lymphoid cells were determined in lung tissue via flow cytometry. RESULTS: A significant higher airway resistance (Rn; P < 0.0001) was observed in mice swimming in chlorinated water (mean Rn = 1.26 cmH2O.s/ml) compared to mice swimming in tap water (mean Rn = 0.76 cmH2O.s/ml) and both inhalation groups in the absence of cellular inflammation. No significant differences were found in lung immune cell populations or in lung tight junction mRNA expression. Experiments in SCID, Rag2-/-γc-/- or Cpa3cre/+ mice showed a limited involvement of the innate, adaptive immune system or the mast cells. CONCLUSION: Our 3-week swimming murine model mimics intensive swimming in chlorinated water with the presence of airway hyperreactivity in mice swimming in chlorinated water in the absence of airway inflammation and airway epithelial damage.


Asunto(s)
Asma , Cloro , Animales , Cloro/toxicidad , Inmunidad Innata , Inflamación/inducido químicamente , Pulmón , Linfocitos , Ratones , Ratones SCID , Agua
7.
Part Fibre Toxicol ; 18(1): 12, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722268

RESUMEN

BACKGROUND: Exercise-induced bronchoconstriction (EIB) is a transient airway narrowing, occurring during or shortly after intensive exercise. It is highly prevalent in non-asthmatic outdoor endurance athletes suggesting an important contribution of air pollution in the development of EIB. Therefore, more research is necessary to investigate the combination of exercise and pollutants on the airways. METHODS: Balbc/ByJ mice were intranasally challenged 5 days a week for 3 weeks with saline or 0.2 mg/ml diesel exhaust particles (DEP), prior to a daily incremental running session or non-exercise session. Once a week, the early ventilatory response was measured and lung function was determined at day 24. Airway inflammation and cytokine levels were evaluated in bronchoalveolar lavage fluid. Furthermore, innate lymphoid cells, dendritic cells and tight junction mRNA expression were determined in lung tissue. RESULTS: Submaximal exercise resulted in acute alterations of the breathing pattern and significantly improved FEV0.1 at day 24. DEP exposure induced neutrophilic airway inflammation, accompanied with increased percentages of CD11b+ DC in lung tissue and pro-inflammatory cytokines, such as IL-13, MCP-1, GM-CSF and KC. Occludin and claudin-1(Cldn-1) expression were respectively increased and decreased by DEP exposure. Whereas, exercise increased Cldn-3 and Cldn-18 expression. Combining exercise and DEP exposure resulted in significantly increased SP-D levels in the airways. CONCLUSION: DEP exposure induced typical airway neutrophilia, DC recruitment and pro-inflammatory cytokine production. Whereas, intensive exercise induced changes of the breathing pattern. The combination of both triggers resulted in a dysregulation of tight junction expression, suggesting that intensive exercise in polluted environments can induce important changes in the airway physiology and integrity.


Asunto(s)
Inmunidad Innata , Emisiones de Vehículos , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Contaminantes Ambientales/toxicidad , Pulmón , Linfocitos , Ratones
8.
J Fungi (Basel) ; 8(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35049941

RESUMEN

Influenza-associated pulmonary aspergillosis (IAPA) is a global recognized superinfection in critically ill influenza patients. Baloxavir marboxil, a cap-dependent endonuclease inhibitor, is a newly approved anti-influenza therapeutic. Although the benefits as a treatment for influenza are clear, its efficacy against an influenza-A. fumigatus co-infection has yet to be determined. We investigated the therapeutic effect of baloxavir marboxil in a murine model for IAPA. Immunocompetent mice received intranasal instillation of influenza A followed by orotracheal inoculation with Aspergillus fumigatus 4 days later. Administration of baloxavir marboxil or sham was started at day 0, day 2 or day 4. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (µCT) and fungal burden with bioluminescence imaging (BLI). In vivo imaging was supplemented with virological, mycological and biochemical endpoint investigations. We observed an improved body weight, survival and viral clearance in baloxavir marboxil treated mice. µCT showed less pulmonary lesions and bronchial dilation after influenza and after Aspergillus co-infection in a treatment-dependent pattern. Furthermore, baloxavir marboxil was associated with effective inhibition of fungal invasion. Hence, our results provide evidence that baloxavir marboxil mitigates severe influenza thereby decreasing the susceptibility to a lethal invasive Aspergillus superinfection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...