Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Microbiol ; 14: 1164877, 2023.
Article En | MEDLINE | ID: mdl-37206326

Microorganisms and their hosts communicate with each other by secreting numerous components. This cross-kingdom cell-to-cell signaling involves proteins and small molecules, such as metabolites. These compounds can be secreted across the membrane via numerous transporters and may also be packaged in outer membrane vesicles (OMVs). Among the secreted components, volatile compounds (VOCs) are of particular interest, including butyrate and propionate, which have proven effects on intestinal, immune, and stem cells. Besides short fatty acids, other groups of volatile compounds can be either freely secreted or contained in OMVs. As vesicles might extend their activity far beyond the gastrointestinal tract, study of their cargo, including VOCs, is even more pertinent. This paper is devoted to the VOCs secretome of the Bacteroides genus. Although these bacteria are highly presented in the intestinal microbiota and are known to influence human physiology, their volatile secretome has been studied relatively poorly. The 16 most well-represented Bacteroides species were cultivated; their OMVs were isolated and characterized by NTA and TEM to determine particle morphology and their concentration. In order to analyze the VOCs secretome, we propose a headspace extraction with GC-MS analysis as a new tool for sample preparation and analysis of volatile compounds in culture media and isolated bacterial OMVs. A wide range of released VOCs, both previously characterized and newly described, have been revealed in media after cultivation. We identified more than 60 components of the volatile metabolome in bacterial media, including fatty acids, amino acids, and phenol derivatives, aldehydes and other components. We found active butyrate and indol producers among the analyzed Bacteroides species. For a number of Bacteroides species, OMVs have been isolated and characterized here for the first time as well as volatile compounds analysis in OMVs. We observed a completely different distribution of VOC in vesicles compared to the bacterial media for all analyzed Bacteroides species, including almost complete absence of fatty acids in vesicles. This article provides a comprehensive analysis of the VOCs secreted by Bacteroides species and explores new perspectives in the study of bacterial secretomes in relation the intercellular communication.

2.
BMC Genomics ; 22(1): 505, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-34225652

BACKGROUND: Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding. RESULTS: We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids, revealed significant genetic associations for eleven of them. Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14, explaining up to 34.5% of the total variation of docosanoic acid (22:0) in sunflower oil. CONCLUSIONS: This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.


Fatty Acids/analysis , Helianthus , Plant Oils/analysis , Genetic Association Studies , Genotype , Helianthus/genetics , North America , Plant Breeding , Russia
3.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Article En | MEDLINE | ID: mdl-30181282

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Anti-Bacterial Agents/pharmacology , Coumarins/pharmacology , Gastrointestinal Microbiome/drug effects , High-Throughput Screening Assays/methods , Metabolomics/methods , Animals , Anti-Bacterial Agents/metabolism , Bacillus pumilus/drug effects , Bacillus pumilus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coumarins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial/physiology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Healthy Volunteers , Humans , Lab-On-A-Chip Devices , Proteomics/methods , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Single-Cell Analysis/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Ursidae/microbiology
4.
Sci Rep ; 7(1): 5008, 2017 07 10.
Article En | MEDLINE | ID: mdl-28694488

Numerous studies are devoted to the intestinal microbiota and intercellular communication maintaining homeostasis. In this regard, vesicles secreted by bacteria represent one of the most popular topics for research. For example, the outer membrane vesicles (OMVs) of Bacteroides fragilis play an important nutritional role with respect to other microorganisms and promote anti-inflammatory effects on immune cells. However, toxigenic B. fragilis (ETBF) contributes to bowel disease, even causing colon cancer. If nontoxigenic B. fragilis (NTBF) vesicles exert a beneficial effect on the intestine, it is likely that ETBF vesicles can be utilized for potential pathogenic implementation. To confirm this possibility, we performed comparative proteomic HPLC-MS/MS analysis of vesicles isolated from ETBF and NTBF. Furthermore, we performed, for the first time, HPLC-MS/MS and GS-MS comparative metabolomic analysis for the vesicles isolated from both strains with subsequent reconstruction of the vesicle metabolic pathways. We utilized fluxomic experiments to validate the reconstructed biochemical reaction activities and finally observed considerable difference in the vesicle proteome and metabolome profiles. Compared with NTBF OMVs, metabolic activity of ETBF OMVs provides their similarity to micro reactors that are likely to be used for long-term persistence and implementing pathogenic potential in the host.


Bacteroides fragilis/cytology , Metabolomics/methods , Secretory Vesicles/metabolism , Bacteroides fragilis/pathogenicity , Chromatography, High Pressure Liquid , Metabolic Networks and Pathways , Tandem Mass Spectrometry
6.
Article En | MEDLINE | ID: mdl-28144586

The only recognized virulence factor of enterotoxigenic Bacteroides fragilis (ETBF) that accompanies bloodstream infections is the zinc-dependent non-lethal metalloprotease B. fragilis toxin (BFT). The isolated toxin stimulates intestinal secretion, resulting in epithelial damage and necrosis. Numerous publications have focused on the interrelation of BFT with intestinal inflammation and colorectal neoplasia, but nothing is known about the mechanism of its secretion and delivery to host cells. However, recent studies of gram-negative bacteria have shown that outer membrane vesicles (OMVs) could be an essential mechanism for the spread of a large number of virulence factors. Here, we show for the first time that BFT is not a freely secreted protease but is associated with OMVs. Our findings indicate that only outer surface-exposed BFT causes epithelial cell contact disruption. According to our in silico models confirmed by Trp quenching assay and NMR, BFT has special interactions with outer membrane components such as phospholipids and is secreted during vesicle formation. Moreover, the strong cooperation of BFT with polysaccharides is similar to the behavior of lectins. Understanding the molecular mechanisms of BFT secretion provides new perspectives for investigating intestinal inflammation pathogenesis and its prevention.


Bacteroides fragilis/metabolism , Metalloendopeptidases/metabolism , Secretory Vesicles/metabolism , Bacterial Toxins , Bacteroides fragilis/cytology , Protein Transport
7.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Article En | MEDLINE | ID: mdl-28202731

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Butyrylcholinesterase/chemistry , High-Throughput Screening Assays/instrumentation , Microfluidic Analytical Techniques/methods , Paraoxon/chemistry , Single-Cell Analysis/instrumentation , Antibiosis , Biodiversity , Cell Communication , Emulsions , Flow Cytometry , Genotype , High-Throughput Nucleotide Sequencing , Humans , Microfluidic Analytical Techniques/instrumentation , Oils, Volatile/chemistry , Phenotype , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Water/chemistry
8.
PLoS One ; 9(3): e89312, 2014.
Article En | MEDLINE | ID: mdl-24595068

We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.


Metabolomics/methods , Tenericutes/metabolism , Biosynthetic Pathways , Hydrolases/metabolism , Mass Spectrometry , Metabolome , Pentose Phosphate Pathway , Terpenes/metabolism
...