Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Clin Med ; 12(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36769695

RESUMEN

BACKGROUND: Pseudoxanthoma elasticum (PXE), a monogenic disorder resulting in calcification affecting the skin, eyes and peripheral arteries, is caused by mutations in the ABCC6 gene, and is associated with low plasma inorganic pyrophosphate (PPi). It is unknown how ABCC6 genotype affects plasma PPi. METHODS: We studied the association of ABCC6 genotype (192 patients with biallelic pathogenic ABCC6 mutations) and PPi levels, and its association with the severity of arterial and ophthalmological phenotypes. ABCC6 variants were classified as truncating or non-truncating, and three groups of the 192 patients were formed: those with truncating mutations on both chromosomes (n = 121), those with two non-truncating mutations (n = 10), and a group who had one truncating and one non-truncating ABCC6 mutation (n = 61). The hypothesis formulated before this study was that there was a negative association between PPi level and disease severity. RESULTS: Our findings confirm low PPi in PXE compared with healthy controls (0.53 ± 0.15 vs. 1.13 ± 0.29 µM, p < 0.01). The PPi of patients correlated with increasing age (ß: 0.05 µM, 95% CI: 0.03-0.06 per 10 years) and was higher in females (0.55 ± 0.17 vs. 0.51 ± 0.13 µM in males, p = 0.03). However, no association between PPi and PXE phenotypes was found. When adjusted for age and sex, no association between PPi and ABCC6 genotype was found. CONCLUSIONS: Our data suggest that the relationship between ABCC6 mutations and reduced plasma PPi may not be as direct as previously thought. PPi levels varied widely, even in patients with the same ABCC6 mutations, further suggesting a lack of direct correlation between them, even though the ABCC6 protein-mediated pathway is responsible for ~60% of this metabolite in the circulation. We discuss potential factors that may perturb the expected associations between ABCC6 genotype and PPi and between PPi and disease severity. Our findings support the argument that predictions of pathogenicity made on the basis of mutations (or on the structure of the mutated protein) could be misleading.

2.
Rheumatology (Oxford) ; 61(3): 1158-1165, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34152415

RESUMEN

OBJECTIVE: The pathogenesis of calcinosis cutis, a disabling complication of SSc, is poorly understood and effective treatments are lacking. Inorganic pyrophosphate (PPi) is a key regulator of ectopic mineralization, and its deficiency has been implicated in ectopic mineralization disorders. We therefore sought to test the hypothesis that SSc may be associated with reduced circulating PPi, which might play a pathogenic role in calcinosis cutis. METHODS: Subjects with SSc and age-matched controls without SSc were recruited from the outpatient rheumatology clinics at Rutgers and Northwestern Universities (US cohort), and from the Universities of Szeged and Debrecen (Hungarian cohort). Calcinosis cutis was confirmed by direct palpation, by imaging or both. Plasma PPi levels were determined in platelet-free plasma using ATP sulfurylase to convert PPi into ATP in the presence of excess adenosine 5' phosphosulfate. RESULTS: Eighty-one patients with SSc (40 diffuse cutaneous, and 41 limited cutaneous SSc) in the US cohort and 45 patients with SSc (19 diffuse cutaneous and 26 limited cutaneous SSc) in the Hungarian cohort were enrolled. Calcinosis was frequently detected (40% of US and 46% of the Hungarian cohort). Plasma PPi levels were significantly reduced in both SSc cohorts with and without calcinosis (US: P = 0.003; Hungarian: P < 0.001). CONCLUSIONS: Circulating PPi are significantly reduced in SSc patients with or without calcinosis. Reduced PPi may be important in the pathophysiology of calcinosis and contribute to tissue damage with chronic SSc. Administering PPi may be a therapeutic strategy and larger clinical studies are planned to confirm our findings.


Asunto(s)
Calcinosis/sangre , Calcinosis/etiología , Difosfatos/sangre , Esclerodermia Sistémica/sangre , Esclerodermia Sistémica/complicaciones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Exp Dermatol ; 31(4): 548-555, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34758173

RESUMEN

Pseudoxanthoma elasticum (PXE; OMIM 264800) is a rare heritable multisystem disorder, characterized by ectopic mineralization affecting elastic fibres in the skin, eyes and the cardiovascular system. Skin findings often lead to early diagnosis of PXE, but currently, no specific treatment exists to counteract the progression of symptoms. PXE belongs to a group of Mendelian calcification disorders linked to pyrophosphate metabolism, which also includes generalized arterial calcification of infancy (GACI) and arterial calcification due to CD73 deficiency (ACDC). Inactivating mutations in ABCC6, ENPP1 and NT5E are the genetic cause of these diseases, respectively, and all of them result in reduced inorganic pyrophosphate (PPi ) concentration in the circulation. Although PPi is a strong inhibitor of ectopic calcification, oral supplementation therapy was initially not considered because of its low bioavailability. Our earlier work however demonstrated that orally administered pyrophosphate inhibits ectopic calcification in the animal models of PXE and GACI, and that orally given Na4 P2 O7 is absorbed in humans. Here, we report that gelatin-encapsulated Na2 H2 P2 O7  has similar absorption properties in healthy volunteers and people affected by PXE. The sodium-free K2 H2 P2 O7 form resulted in similar uptake in healthy volunteers and inhibited calcification in Abcc6-/- mice as effectively as its sodium counterpart. Novel pyrophosphate compounds showing higher bioavailability in mice were also identified. Our results provide an important step towards testing oral PPi in clinical trials in PXE, or potentially any condition accompanied by ectopic calcification including diabetes, chronic kidney disease or ageing.


Asunto(s)
Seudoxantoma Elástico , Calcificación Vascular , Animales , Suplementos Dietéticos , Difosfatos , Humanos , Ratones , Mutación , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/uso terapéutico , Seudoxantoma Elástico/tratamiento farmacológico , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/uso terapéutico , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética
4.
J Med Chem ; 64(22): 16553-16572, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34783240

RESUMEN

The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.


Asunto(s)
Alcaloides de Triptamina Secologanina/farmacología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Receptores Opioides mu
5.
J Med Chem ; 64(13): 9010-9041, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34138572

RESUMEN

Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Prealbúmina/farmacología , Proteínas Plasmáticas de Unión al Retinol/antagonistas & inhibidores , Neuropatías Amiloides Familiares/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Cinética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Estructura Molecular , Prealbúmina/síntesis química , Prealbúmina/química , Proteínas Plasmáticas de Unión al Retinol/deficiencia , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Relación Estructura-Actividad
6.
Front Cell Dev Biol ; 9: 628699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768091

RESUMEN

Calcification of various tissues is a significant health issue associated with aging, cancer and autoimmune diseases. There are both environmental and genetic factors behind this phenomenon and understanding them is essential for the development of efficient therapeutic approaches. Pseudoxanthoma elasticum (PXE) is a rare genetic disease, a prototype for calcification disorders, resulting from the dysfunction of ABCC6, a transport protein found in the membranes of cells. It is identified by excess calcification in a variety of tissues (e.g., eyes, skin, arteries) and currently it has no cure, known treatments target the symptoms only. Preclinical studies of PXE have been successful in mice, proving the usefulness of animal models for the study of the disease. Here, we present a new zebrafish (Danio rerio) model for PXE. By resolving some ambiguous assemblies in the zebrafish genome, we show that there are two functional and one non-functional paralogs for ABCC6 in zebrafish (abcc6a, abcc6b.1, and abcc6b.2, respectively). We created single and double mutants for the functional paralogs and characterized their calcification defects with a combination of techniques. Zebrafish deficient in abcc6a show defects in their vertebral calcification and also display ectopic calcification foci in their soft tissues. Our results also suggest that the impairment of abcc6b.1 does not affect this biological process.

7.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33555255

RESUMEN

Controlling receptor functional selectivity profiles for opioid receptors is a promising approach for discovering safer analgesics; however, the structural determinants conferring functional selectivity are not well understood. Here, we used crystal structures of opioid receptors, including the recently solved active state kappa opioid complex with MP1104, to rationally design novel mixed mu (MOR) and kappa (KOR) opioid receptor agonists with reduced arrestin signaling. Analysis of structure-activity relationships for new MP1104 analogs points to a region between transmembrane 5 (TM5) and extracellular loop (ECL2) as key for modulation of arrestin recruitment to both MOR and KOR. The lead compounds, MP1207 and MP1208, displayed MOR/KOR Gi-partial agonism with diminished arrestin signaling, showed efficient analgesia with attenuated liabilities, including respiratory depression and conditioned place preference and aversion in mice. The findings validate a novel structure-inspired paradigm for achieving beneficial in vivo profiles for analgesia through different mechanisms that include bias, partial agonism, and dual MOR/KOR agonism.


Asunto(s)
Morfinanos/química , Receptores Opioides kappa/química , Receptores Opioides mu/química , Secuencias de Aminoácidos , Analgésicos/química , Analgésicos/metabolismo , Animales , Sitios de Unión , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Relación Estructura-Actividad
8.
Cell Mol Neurobiol ; 41(5): 977-993, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32424771

RESUMEN

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand-protein contacts and its signaling complexes.


Asunto(s)
Analgésicos Opioides/metabolismo , Azidas/metabolismo , Encéfalo/metabolismo , Naltrexona/análogos & derivados , Etiquetas de Fotoafinidad/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/síntesis química , Animales , Azidas/síntesis química , Encéfalo/efectos de los fármacos , Células CHO , Línea Celular , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naltrexona/síntesis química , Naltrexona/metabolismo , Etiquetas de Fotoafinidad/síntesis química , Unión Proteica/fisiología , Ensayo de Unión Radioligante/métodos
9.
Neuropharmacology ; 185: 108445, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383089

RESUMEN

Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Antineoplásicos/toxicidad , Morfinanos/administración & dosificación , Neuralgia/prevención & control , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Animales , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/patología , Ratas , Ratas Sprague-Dawley
10.
FEBS Lett ; 595(6): 789-798, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159684

RESUMEN

Mutations in the ABCC6 gene result in calcification diseases such as pseudoxanthoma elasticum or Generalized Arterial Calcification of Infancy. Generation of antibodies recognizing an extracellular (EC) epitope of ABCC6 has been hampered by the short EC segments of the protein. To overcome this limitation, we immunized bovine FcRn transgenic mice exhibiting an augmented humoral immune response with Human Embryonic Kidney 293 cells cells expressing human ABCC6 (hABCC6). We obtained a monoclonal antibody recognizing an EC epitope of hABCC6 that we named mEChC6. Limited proteolysis revealed that the epitope is within a loop in the N-terminal half of ABCC6 and probably spans amino acids 338-347. mEChC6 recognizes hABCC6 in the liver of hABCC6 transgenic mice, verifying both specificity and EC binding to intact hepatocytes.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Epítopos/inmunología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/inmunología , Animales , Epítopos/genética , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
11.
J Med Chem ; 63(19): 11054-11084, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32878437

RESUMEN

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all-trans-retinol (1) delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis. However, the release of TTR by selective RBP4 antagonists may be associated with TTR tetramer destabilization and, potentially, TTR amyloid formation. We describe herein the identification of bispecific RBP4 antagonist-TTR tetramer kinetic stabilizers. Standout analogue (±)-44 possesses suitable potency for both targets, significantly lowers mouse plasma RBP4 levels, and prevents TTR aggregation in a gel-based assay. This new class of bispecific compounds may be especially important as a therapy for dry AMD patients who have another common age-related comorbidity, senile systemic amyloidosis, a nongenetic disease associated with wild-type TTR misfolding.


Asunto(s)
Biopolímeros/metabolismo , Diseño de Fármacos , Atrofia Geográfica/tratamiento farmacológico , Degeneración Macular/tratamiento farmacológico , Prealbúmina/metabolismo , Proteínas Plasmáticas de Unión al Retinol/antagonistas & inhibidores , Animales , Biopolímeros/química , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Atrofia Geográfica/metabolismo , Humanos , Degeneración Macular/metabolismo , Ratones , Estructura Molecular , Prealbúmina/química , Proteínas Plasmáticas de Unión al Retinol/química
12.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978974

RESUMEN

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Dominios Proteicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Pliegue de Proteína
13.
J Cell Mol Med ; 24(20): 11791-11799, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32885586

RESUMEN

Trauma-induced calcification is the pathological consequence of complex injuries which often affect the central nervous system and other parts of the body simultaneously. We demonstrated by an animal model recapitulating the calcification of the above condition that adrenaline transmits the stress signal of brain injury to the calcifying tissues. We have also found that although the level of plasma pyrophosphate, the endogenous inhibitor of calcification, was normal in calcifying animals, it could not counteract the acute calcification. However, externally added pyrophosphate inhibited calcification even when it was administered after the complex injuries. Our finding suggests a potentially powerful clinical intervention of calcification triggered by polytrauma injuries which has no effective treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Difosfatos/uso terapéutico , Osificación Heterotópica/complicaciones , Calcificación Vascular/etiología , Antagonistas Adrenérgicos/farmacología , Animales , Lesiones Traumáticas del Encéfalo/patología , Cardiotoxinas , Difosfatos/sangre , Modelos Animales de Enfermedad , Epinefrina , Femenino , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Osificación Heterotópica/sangre , Osificación Heterotópica/diagnóstico por imagen , Receptores Adrenérgicos/metabolismo , Calcificación Vascular/sangre , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/genética , Microtomografía por Rayos X
14.
Orv Hetil ; 161(17): 644-651, 2020 04 01.
Artículo en Húngaro | MEDLINE | ID: mdl-32324356

RESUMEN

The COVID-19 epidemic hit everyone, professionals and civilians alike. The possibility of a worldwide pandemic has long been theorized by epidemiologists, infectologists on the one hand, and sociologists and behavioral scientists dealing with communication and social habits on the other. Yet, faced with real-time events, daily infections and mortality statistics, almost everyone feels uninformed or disturbingly inexperienced. This summary aims to provide an overview of the latest scientific evidences. Of course, the incomplete material, compiled in late March 2020, will certainly contain a few elements that likely will be outdated in a few weeks. The authors hope that in the next publication we will all read much better and more hopeful prospects. Orv Hetil. 2020; 161(17): 644­651.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Coronavirus , Pandemias , Neumonía Viral , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Neumonía Viral/epidemiología , SARS-CoV-2
15.
Molecules ; 25(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192229

RESUMEN

The present work represents the in vitro (potency, affinity, efficacy) and in vivo (antinociception, constipation) opioid pharmacology of the novel compound 14-methoxycodeine-6-O-sulfate (14-OMeC6SU), compared to the reference compounds codeine-6-O-sulfate (C6SU), codeine and morphine. Based on in vitro tests (mouse and rat vas deferens, receptor binding and [35S]GTPγS activation assays), 14-OMeC6SU has µ-opioid receptor-mediated activity, displaying higher affinity, potency and efficacy than the parent compounds. In rats, 14-OMeC6SU showed stronger antinociceptive effect in the tail-flick assay than codeine and was equipotent to morphine, whereas C6SU was less efficacious after subcutaneous (s.c.) administration. Following intracerebroventricular injection, 14-OMeC6SU was more potent than morphine. In the Complete Freund's Adjuvant-induced inflammatory hyperalgesia, 14-OMeC6SU and C6SU in s.c. doses up to 6.1 and 13.2 µmol/kg, respectively, showed peripheral antihyperalgesic effect, because co-administered naloxone methiodide, a peripherally acting opioid receptor antagonist antagonized the measured antihyperalgesia. In addition, s.c. C6SU showed less pronounced inhibitory effect on the gastrointestinal transit than 14-OMeC6SU, codeine and morphine. This study provides first evidence that 14-OMeC6SU is more effective than codeine or C6SU in vitro and in vivo. Furthermore, despite C6SU peripheral antihyperalgesic effects with less gastrointestinal side effects the superiority of 14-OMeC6SU was obvious throughout the present study.


Asunto(s)
Analgésicos Opioides/síntesis química , Analgésicos Opioides/farmacología , Codeína/síntesis química , Codeína/farmacología , Analgésicos Opioides/química , Analgésicos Opioides/uso terapéutico , Animales , Unión Competitiva , Codeína/química , Codeína/uso terapéutico , Adyuvante de Freund , Tránsito Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inyecciones Intraventriculares , Masculino , Ratones , Naloxona/farmacología , Naloxona/uso terapéutico , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Ratas Wistar , Receptores Opioides mu/metabolismo
16.
PLoS One ; 15(1): e0228291, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978148

RESUMEN

Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.


Asunto(s)
Proteínas Plasmáticas de Unión al Retinol/análisis , Bibliotecas de Moléculas Pequeñas/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Perros , Macaca fascicularis , Masculino , Modelos Animales , Proteínas Plasmáticas de Unión al Retinol/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/administración & dosificación
17.
J Bone Miner Res ; 35(10): 2070-2081, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33463757

RESUMEN

Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Dieta , Hiperostosis/terapia , Fosfatos/administración & dosificación , Animales , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Humanos , Hipertelorismo , Masculino , Ratones , Proteínas de Transporte de Fosfato/genética
18.
Mol Imaging Biol ; 22(2): 358-366, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31165385

RESUMEN

PURPOSE: Sigma-1 receptors (S1Rs) are overexpressed in almost all human cancers, especially in breast cancers. 1-(4-Iodophenyl)-3-(2-adamantyl)guanidine (IPAG) is a validated high-affinity S1R antagonist. The objective of the current study is to evaluate the potential of iodine-124-labeled IPAG ([124I]IPAG) to image S1R-overexpressing tumors. PROCEDURES: [124I]IPAG was synthesized from a tributyltin precursor dissolved in ethanol using chloramine-T as oxidant. Purity was analyzed using HPLC. In vitro and in vivo studies were performed using the breast cancer cell line MCF-7. Competitive inhibition studies were performed using haloperidol and cold IPAG. Tumors were established in athymic nude mice by injecting 107 cells subcutaneously. Mice were imaged on micro-positron emission tomography (PET) at 4, 24, 48, 72, and 144 h post i.v. injection. Biodistribution studies were performed at same time points. In vivo tracer dilution studies were performed using excess of IPAG and haloperidol. The efficacy of [124I]IPAG to image tumors was evaluated in LNCaP tumor-bearing mice as well. RESULTS: [124I]IPAG was synthesized in quantitative yield and in vitro studies indicated that [124I]IPAG binding was specific to S1R. PET imaging studies in MCF7 tumor-bearing mice reveal that [124I]IPAG accumulates in tumor and is preferentially retained while clearing from non-target organs. The tumor to background increases with time, and tumors could be clearly visualized starting from 24 h post administration. Similar results were obtained in mice bearing LNCaP tumors. In vivo tracer dilution studies showed that the uptake of [124I]IPAG could be competitively inhibited by excess of IPAG and haloperidol. CONCLUSIONS: [124I]IPAG was synthesized successfully in high yields, and in vitro and in vivo studies demonstrate specificity of [124I]IPAG. [124I]IPAG shows specific accumulation in tumors with increasing tumor to background ratio at later time points and therefore has high potential for imaging S1R-overexpressing cancers.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Perfilación de la Expresión Génica , Guanidinas/química , Radioisótopos de Yodo , Yodobencenos/química , Receptores sigma/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Tomografía de Emisión de Positrones , Radiofármacos , Distribución Tisular , Receptor Sigma-1
19.
J Med Chem ; 62(11): 5470-5500, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31079449

RESUMEN

Retinol-binding protein 4 (RBP4) serves as a transporter for all- trans-retinol (1) in the blood, and it has been proposed to act as an adipokine. Elevated plasma levels of the protein have been linked to diabetes, obesity, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). Recently, adipocyte-specific overexpression of RBP4 was reported to cause hepatic steatosis in mice. We previously identified an orally bioavailable RBP4 antagonist that significantly lowered RBP4 serum levels in Abca4-/- knockout mice with concomitant normalization of complement system protein expression and reduction of bisretinoid formation within the retinal pigment epithelium. We describe herein the discovery of novel RBP4 antagonists 48 and 59, which reduce serum RBP4 levels by >80% in mice upon acute oral dosing. Furthermore, 59 demonstrated efficacy in the transgenic adi-hRBP4 murine model of hepatic steatosis, suggesting that RBP4 antagonists may also have therapeutic utility for the treatment of NAFLD.


Asunto(s)
Diseño de Fármacos , Hígado Graso/tratamiento farmacológico , Piperidinas/síntesis química , Piperidinas/farmacología , Proteínas Plasmáticas de Unión al Retinol/antagonistas & inhibidores , Animales , Técnicas de Química Sintética , Modelos Animales de Enfermedad , Masculino , Ratones , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Ratas , Distribución Tisular
20.
Eur J Med Chem ; 164: 241-251, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30597325

RESUMEN

A library-friendly approach to generate new scaffolds is decisive for the development of molecular probes, drug like molecules and preclinical entities. Here, we present the design and synthesis of novel heterocycles with spiro-2,6-dioxopiperazine and spiro-2,6-pyrazine scaffolds through a three-component reaction using various amino acids, ketones, and isocyanides. Screening of select compounds over fifty CNS receptors including G-protein coupled receptors (GPCRs), ion channels, transporters, and enzymes through the NIMH psychoactive drug screening program indicated that a novel spiro-2,6-dioxopyrazine scaffold, UVM147, displays high binding affinity at sigma-1 (σ1) receptor in the nanomolar range. In addition, molecular docking of UVM147 at the human σ1 receptor have shown that it resides in the same binding site that was occupied by the ligand 4-IBP used to obtain a crystal structure of the human sigma-1 (σ1) receptor.


Asunto(s)
Perazina/metabolismo , Pirazinas/metabolismo , Receptores sigma/metabolismo , Aminoácidos/química , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Simulación del Acoplamiento Molecular , Perazina/síntesis química , Unión Proteica , Pirazinas/síntesis química , Compuestos de Espiro/síntesis química , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...