Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 4(6): 771-782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724734

RESUMEN

Excessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS). We demonstrate that this conversion depends on reducing mitochondrial Ca2+ overload as a consequence of retaining the hexokinase II on mitochondria. In a mouse model of kidney ischemia-reperfusion damage, PARP inhibition reduces necrosis and increases transient senescence at the injury site, alongside improved recovery from damage. Together, these data provide evidence that converting cell death into transient senescence can therapeutically benefit tissue regeneration.


Asunto(s)
Muerte Celular , Senescencia Celular , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Estrés Oxidativo/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Muerte Celular/efectos de los fármacos , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Calcio/metabolismo , Modelos Animales de Enfermedad
2.
FEBS J ; 290(5): 1340-1347, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908245

RESUMEN

Dietary choices have a profound impact on the aging process. In addition to the total amount of energy intake, macronutrient composition influences both health and lifespan. However, the exact mechanisms by which dietary macronutrients influence onset and progression of age-associated features remain poorly understood. Cellular senescence is a state of stable growth arrest characterized by the secretion of numerous bioactive molecules with pro-inflammatory properties. Accumulation of senescent cells is considered one of the basic mechanisms of aging and an important contributor to chronic inflammation and tissue degeneration. Whether dietary macronutrients affect the accumulation and the phenotype of senescent cells with age is still unknown. Here, we show that feeding on diets with varying ratios of dietary macronutrients for 3 months has a significant effect on different senescence-associated markers in the mouse liver. High protein intake is associated with higher expression levels of the two classical senescence-associated growth arrest genes, p21 and p16. Furthermore, the expression of many pro-inflammatory secretory markers was increased in diets enriched in protein and further enhanced by increases in fat content. These results provide preliminary evidence that dietary macronutrients have a significant influence on senescence markers and merit further investigation.


Asunto(s)
Envejecimiento , Senescencia Celular , Animales , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Senescencia Celular/genética , Fenotipo , Proteínas en la Dieta/farmacología , Hígado
3.
Cell Death Dis ; 13(8): 681, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931686

RESUMEN

The accumulation of senescent cells is a key characteristic of aging, leading to the progression of age-related diseases such as osteoarthritis (OA). Previous data from our laboratory has demonstrated that high levels of the transmembrane protein connexin 43 (Cx43) are associated with a senescent phenotype in chondrocytes from osteoarthritic cartilage. OA has been reclassified as a musculoskeletal disease characterized by the breakdown of the articular cartilage affecting the whole joint, subchondral bone, synovium, ligaments, tendons and muscles. However, the mechanisms that contribute to the spread of pathogenic factors throughout the joint tissues are still unknown. Here, we show for the first time that small extracellular vesicles (sEVs) released by human OA-derived chondrocytes contain high levels of Cx43 and induce a senescent phenotype in targeted chondrocytes, synovial and bone cells contributing to the formation of an inflammatory and degenerative joint environment by the secretion of senescence-associated secretory associated phenotype (SASP) molecules, including IL-1ß and IL-6 and MMPs. The enrichment of Cx43 changes the protein profile and activity of the secreted sEVs. Our results indicate a dual role for sEVs containing Cx43 inducing senescence and activating cellular plasticity in target cells mediated by NF-kß and the extracellular signal-regulated kinase 1/2 (ERK1/2), inducing epithelial-to-mesenchymal transition (EMT) signalling programme and contributing to the loss of the fully differentiated phenotype. Our results demonstrated that Cx43-sEVs released by OA-derived chondrocytes spread senescence, inflammation and reprogramming factors involved in wound healing failure to neighbouring tissues, contributing to the progression of the disease among cartilage, synovium, and bone and probably from one joint to another. These results highlight the importance for future studies to consider sEVs positive for Cx43 as a new biomarker of disease progression and new target to treat OA.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Condrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Osteoartritis/patología , Fenotipo
4.
Curr Biol ; 32(10): R448-R452, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35609537

RESUMEN

Cellular senescence defines a state of stable and generally irreversible proliferative arrest associated with various morphological, structural and functional changes (Figure 1), including enhanced expression and secretion of pro-inflammatory and tissue-remodelling mediators. This state is crucial in tissue physiology and pathology and arises as a response to potentially damaging stress signals. Whether the activation of a senescence state provides benefits or detriments for tissue function and homeostasis is strictly dependent on the context. Cell senescence acts as a potent tumour-suppressive mechanism limiting the proliferation of cells at risk of malignant transformation and supports the repair of acute tissue damage, but also represents a key driver of ageing and age-related diseases.


Asunto(s)
Senescencia Celular , Homeostasis
5.
EMBO J ; 41(6): e108946, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34985783

RESUMEN

Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti-cancer drugs can cause premature senescence of non-malignant cells. These therapy-induced senescent cells can have pro-tumorigenic and pro-disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence-like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non-malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i-induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro-inflammatory and NF-κB-driven components. We find that CDK4/6i-induced senescent cells do not acquire pro-tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress-dependent and a predictor for the biological functions of different senescence subsets.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Senescencia Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Mol Cell ; 81(9): 2041-2052.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823141

RESUMEN

Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proliferación Celular , Senescencia Celular , Hipoxia/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Edad , Animales , Antibióticos Antineoplásicos/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Hidroxibenzoatos/farmacología , Hipoxia/patología , Hipoxia/fisiopatología , Mediadores de Inflamación/metabolismo , Isoquinolinas/farmacología , Ratones Endogámicos C57BL , Fuerza Muscular , FN-kappa B/metabolismo , Comunicación Paracrina , Fenotipo , Transducción de Señal
7.
Aging (Albany NY) ; 12(16): 15882-15905, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32745074

RESUMEN

Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.


Asunto(s)
Antirreumáticos/farmacología , Cartílago Articular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Iridoides/farmacología , Olea , Osteoartritis/tratamiento farmacológico , Polifenoles/farmacología , Regeneración/efectos de los fármacos , Anciano , Antirreumáticos/aislamiento & purificación , Cartílago Articular/metabolismo , Cartílago Articular/patología , Línea Celular , Microambiente Celular , Condrocitos/metabolismo , Condrocitos/patología , Colágeno Tipo II/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Femenino , Frutas , Humanos , Glucósidos Iridoides , Iridoides/aislamiento & purificación , Masculino , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Olea/química , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteogénesis/efectos de los fármacos , Polifenoles/aislamiento & purificación , Transducción de Señal , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
8.
Biomolecules ; 10(4)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326143

RESUMEN

Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.


Asunto(s)
Osteoartritis/terapia , Receptores de Superficie Celular/metabolismo , Animales , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Femenino , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos BALB C , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , FN-kappa B/metabolismo , Osteoartritis/patología , Unión Proteica , Isoformas de Proteínas/metabolismo , Transducción de Señal
9.
Cell Death Dis ; 9(12): 1166, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518918

RESUMEN

Osteoarthritis (OA), a chronic disease characterized by articular cartilage degeneration, is a leading cause of disability and pain worldwide. In OA, chondrocytes in cartilage undergo phenotypic changes and senescence, restricting cartilage regeneration and favouring disease progression. Similar to other wound-healing disorders, chondrocytes from OA patients show a chronic increase in the gap junction channel protein connexin43 (Cx43), which regulates signal transduction through the exchange of elements or recruitment/release of signalling factors. Although immature or stem-like cells are present in cartilage from OA patients, their origin and role in disease progression are unknown. In this study, we found that Cx43 acts as a positive regulator of chondrocyte-mesenchymal transition. Overactive Cx43 largely maintains the immature phenotype by increasing nuclear translocation of Twist-1 and tissue remodelling and proinflammatory agents, such as MMPs and IL-1ß, which in turn cause cellular senescence through upregulation of p53, p16INK4a and NF-κB, contributing to the senescence-associated secretory phenotype (SASP). Downregulation of either Cx43 by CRISPR/Cas9 or Cx43-mediated gap junctional intercellular communication (GJIC) by carbenoxolone treatment triggered rediferentiation of osteoarthritic chondrocytes into a more differentiated state, associated with decreased synthesis of MMPs and proinflammatory factors, and reduced senescence. We have identified causal Cx43-sensitive circuit in chondrocytes that regulates dedifferentiation, redifferentiation and senescence. We propose that chondrocytes undergo chondrocyte-mesenchymal transition where increased Cx43-mediated GJIC during OA facilitates Twist-1 nuclear translocation as a novel mechanism involved in OA progression. These findings support the use of Cx43 as an appropriate therapeutic target to halt OA progression and to promote cartilage regeneration.


Asunto(s)
Cartílago Articular/inmunología , Comunicación Celular/genética , Senescencia Celular/genética , Condrocitos/inmunología , Conexina 43/genética , Osteoartritis/genética , Adipocitos/efectos de los fármacos , Adipocitos/inmunología , Adipocitos/patología , Antígenos CD/genética , Antígenos CD/inmunología , Carbenoxolona/farmacología , Cartílago Articular/patología , Estudios de Casos y Controles , Comunicación Celular/inmunología , Diferenciación Celular , Senescencia Celular/inmunología , Condrocitos/efectos de los fármacos , Condrocitos/patología , Conexina 43/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/inmunología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/patología , FN-kappa B/genética , FN-kappa B/inmunología , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Osteoartritis/inmunología , Osteoartritis/patología , Cultivo Primario de Células , Índice de Severidad de la Enfermedad , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/inmunología
10.
Ageing Res Rev ; 42: 56-71, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29258883

RESUMEN

Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.


Asunto(s)
Envejecimiento/metabolismo , Cartílago Articular/fisiología , Diferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Osteoartritis/metabolismo , Regeneración/fisiología , Envejecimiento/patología , Animales , Cartílago Articular/patología , Proliferación Celular/fisiología , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Osteoartritis/patología , Transducción de Señal/fisiología
11.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 728-736, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28167212

RESUMEN

Connexins (Cxs) are integral membrane proteins that form high-conductance plasma membrane channels, allowing communication from cell to cell (via gap junctions) and from cells to the extracellular environment (via hemichannels). Initially described for their role in joining excitable cells (nerve and muscle), gap junctions (GJs) are found between virtually all cells in solid tissues and are essential for functional coordination by enabling the direct transfer of small signalling molecules, metabolites, ions, and electrical signals from cell to cell. Several studies have revealed diverse channel-independent functions of Cxs, which include the control of cell growth and tumourigenicity. Connexin43 (Cx43) is the most widespread Cx in the human body. The myriad roles of Cx43 and its implication in the development of disorders such as cancer, inflammation, osteoarthritis and Alzheimer's disease have given rise to many novel questions. Several RNA- and DNA-binding motifs were predicted in the Cx43 and Cx26 sequences using different computational methods. This review provides insights into new, ground-breaking functions of Cxs, highlighting important areas for future work such as transfer of genetic information through extracellular vesicles. We discuss the implication of potential RNA- and DNA-binding domains in the Cx43 and Cx26 sequences in the cellular communication and control of signalling pathways.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Exosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Transporte Biológico , Comunicación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Conexina 26 , Conexina 43/genética , Conexinas/genética , Uniones Comunicantes , Humanos , Inflamación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , ARN/genética , ARN/metabolismo
12.
Oncotarget ; 7(45): 73055-73067, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27682878

RESUMEN

Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis.


Asunto(s)
Cartílago Articular/citología , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Conexina 43/genética , Fenotipo , Dominios y Motivos de Interacción de Proteínas/genética , Animales , Biomarcadores , Cartílago Articular/patología , Conexina 43/química , Conexina 43/metabolismo , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...