Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Cell Rep Med ; 5(2): 101393, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38280376

In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. In addition, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.


Antibodies, Monoclonal, Humanized , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Urologic Neoplasms , Humans , Carboplatin/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/chemically induced , Carcinoma, Transitional Cell/pathology , Cisplatin/therapeutic use , Deoxycytidine/therapeutic use , Gemcitabine , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/drug therapy , Urologic Neoplasms/chemically induced , Urologic Neoplasms/pathology
3.
Biochem J ; 479(9): 929-951, 2022 05 13.
Article En | MEDLINE | ID: mdl-35522161

Receptor interacting protein 1 (RIP1) kinase is a critical regulator of inflammation and cell death signaling, and plays a crucial role in maintaining immune responses and proper tissue homeostasis. Mounting evidence argues for the importance of RIP1 post-translational modifications in control of its function. Ubiquitination by E3 ligases, such as inhibitors of apoptosis (IAP) proteins and LUBAC, as well as the reversal of these modifications by deubiquitinating enzymes, such as A20 and CYLD, can greatly influence RIP1 mediated signaling. In addition, cleavage by caspase-8, RIP1 autophosphorylation, and phosphorylation by a number of signaling kinases can greatly impact cellular fate. Disruption of the tightly regulated RIP1 modifications can lead to signaling disbalance in TNF and/or TLR controlled and other inflammatory pathways, and result in severe human pathologies. This review will focus on RIP1 and its many modifications with an emphasis on ubiquitination, phosphorylation, and cleavage, and their functional impact on the RIP1's role in signaling pathways.


Protein Processing, Post-Translational , Receptor-Interacting Protein Serine-Threonine Kinases , Apoptosis/physiology , Humans , Inhibitor of Apoptosis Proteins/genetics , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Ubiquitination
4.
Methods Mol Biol ; 2366: 109-123, 2021.
Article En | MEDLINE | ID: mdl-34236635

Proper maintenance of organismal homeostasis, development, and immune defense requires precise regulation of survival and signaling pathways. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Although initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cell survival. Cellular IAP1 and 2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and themselves thus enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent proteasomal degradation of the NF-κB-inducing kinase NIK. Here we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining functional roles of c-IAPs in these pathways.


Signal Transduction , Apoptosis , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination
5.
Cell Death Dis ; 12(4): 379, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828080

RIP1 kinase-mediated inflammatory and cell death pathways have been implicated in the pathology of acute and chronic disorders of the nervous system. Here, we describe a novel animal model of RIP1 kinase deficiency, generated by knock-in of the kinase-inactivating RIP1(D138N) mutation in rats. Homozygous RIP1 kinase-dead (KD) rats had normal development, reproduction and did not show any gross phenotypes at baseline. However, cells derived from RIP1 KD rats displayed resistance to necroptotic cell death. In addition, RIP1 KD rats were resistant to TNF-induced systemic shock. We studied the utility of RIP1 KD rats for neurological disorders by testing the efficacy of the genetic inactivation in the transient middle cerebral artery occlusion/reperfusion model of brain injury. RIP1 KD rats were protected in this model in a battery of behavioral, imaging, and histopathological endpoints. In addition, RIP1 KD rats had reduced inflammation and accumulation of neuronal injury biomarkers. Unbiased proteomics in the plasma identified additional changes that were ameliorated by RIP1 genetic inactivation. Together these data highlight the utility of the RIP1 KD rats for target validation and biomarker studies for neurological disorders.


Brain Injuries/genetics , Cell Death/genetics , Ischemia/genetics , Protein Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases
6.
Cell Death Differ ; 28(3): 915-931, 2021 03.
Article En | MEDLINE | ID: mdl-32994544

RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.


Amyotrophic Lateral Sclerosis/enzymology , GTPase-Activating Proteins/genetics , Motor Neurons/pathology , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Disease Progression , Female , HT29 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Necroptosis
7.
Sci Signal ; 13(634)2020 06 02.
Article En | MEDLINE | ID: mdl-32487715

The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE.


Dendritic Cells/metabolism , Endosomes/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Membrane Glycoproteins/metabolism , Plasma Cells/metabolism , Signal Transduction , Toll-Like Receptor 7/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Endosomes/genetics , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Membrane Glycoproteins/genetics , Mice , Toll-Like Receptor 7/genetics
8.
J Leukoc Biol ; 107(6): 941-952, 2020 06.
Article En | MEDLINE | ID: mdl-31985117

Receptor interacting protein kinase 1 (RIP1) is a critical effector of inflammatory responses and cell death activation. Cell death pathways regulated by RIP1 include caspase-dependent apoptosis and caspase-independent necroptosis. The kinase activity of RIP1 has been associated with a number of inflammatory, neurodegenerative, and oncogenic diseases. In this study, we use the RIP1 kinase inhibitor GNE684 to demonstrate that RIP1 inhibition can effectively block skin inflammation and immune cell infiltrates in livers of Sharpin mutant (Cpdm; chronic proliferative dermatitis) mice in an interventional setting, after disease onset. On the other hand, genetic inactivation of RIP1 (RIP1 KD) or ablation of RIP3 (RIP3 KO) or MLKL (MLKL KO) did not affect testicular pathology of aging male mice. Likewise, infection with vaccinia virus or with mouse gammaherpesvirus MHV68 resulted in similar viral clearance in wild-type, RIP1 KD, and RIP3 KO mice. In summary, this study highlights the benefits of inhibiting RIP1 in skin inflammation, as opposed to its lack of relevance for testicular longevity and the response to certain viral infections.


Dermatitis/genetics , Herpesviridae Infections/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Skin/immunology , Vaccinia/genetics , Animals , Chronic Disease , Dermatitis/immunology , Dermatitis/pathology , Dermatitis/virology , Disease Models, Animal , Gammaherpesvirinae/immunology , Gammaherpesvirinae/pathogenicity , Gene Expression Regulation , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Inflammation , Liver/immunology , Liver/pathology , Liver/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Protein Kinases/deficiency , Protein Kinases/genetics , Protein Kinases/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction , Skin/pathology , Skin/virology , Testis/immunology , Testis/pathology , Testis/virology , Vaccinia/immunology , Vaccinia/pathology , Vaccinia/virology , Vaccinia virus/immunology , Vaccinia virus/pathogenicity , Virus Replication/immunology
9.
Cell Death Differ ; 27(1): 161-175, 2020 01.
Article En | MEDLINE | ID: mdl-31101885

The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases. Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1 D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibody-induced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression and metastases.


Inflammation/enzymology , Neoplasms/enzymology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Arthritis/enzymology , Cell Death , Cell Line , Cell Line, Tumor , Colitis/etiology , Colitis/prevention & control , Dermatitis/enzymology , Female , Gene Knock-In Techniques , Humans , Ileitis/etiology , Ileitis/prevention & control , Intracellular Signaling Peptides and Proteins/genetics , Male , Melanoma, Experimental/pathology , Mice , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Rats , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/physiology
10.
Cytokine ; 101: 26-32, 2018 01.
Article En | MEDLINE | ID: mdl-27623350

Tumor Necrosis Factor alpha (TNFα, TNF) is a key mediator and regulator of mammalian immune responses in healthy organisms and in diseased conditions. TNF governs development of the immune system, cell survival signaling pathways, proliferation and regulates metabolic processes. Whereas TNF-induced NF-κB and MAP pro-survival kinase activities constitute its major biochemical functions, TNF can also stimulate cell death in certain pathological situations. TNF-induced signal transduction pathways are tightly regulated through ubiquitination and phosphorylation of molecules partaking in all TNF-dependent membrane-associated and intracellular protein signaling complexes. Deregulated TNF signaling in individuals carrying naturally occurring genetic mutations in proteins that mediate TNF signaling, or in corresponding genetically modified animal models, results in severe pathologies. In this review we will describe the current knowledge of TNF signaling and its relevance for human health.


Cytoplasm/immunology , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Animals , Apoptosis , Cell Death/immunology , Cytoplasm/metabolism , Humans , Mice , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphorylation/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Signal Transduction/genetics , TNF Receptor-Associated Factor 2/immunology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination/immunology
11.
Sci Signal ; 10(475)2017 Apr 18.
Article En | MEDLINE | ID: mdl-28420753

Tumor progression locus 2 (TPL2; also known as MAP3K8) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that phosphorylates the MAPK kinases MEK1 and MEK2 (MEK1/2), which, in turn, activate the MAPKs extracellular signal-regulated kinase 1 (ERK1) and ERK2 (ERK1/2) in macrophages stimulated through the interleukin-1 receptor (IL-1R), Toll-like receptors (TLRs), or the tumor necrosis factor receptor (TNFR). We describe a conserved and critical role for TPL2 in mediating the effector functions of neutrophils through the activation of the p38 MAPK signaling pathway. Gene expression profiling and functional studies of neutrophils and monocytes revealed a MEK1/2-independent branch point downstream of TPL2 in neutrophils. Biochemical analyses identified the MAPK kinases MEK3 and MEK6 and the MAPKs p38α and p38δ as downstream effectors of TPL2 in these cells. Genetic ablation of the catalytic activity of TPL2 or therapeutic intervention with a TPL2-specific inhibitor reduced the production of inflammatory mediators by neutrophils in response to stimulation with the TLR4 agonist lipopolysaccharide (LPS) in vitro, as well as in rodent models of inflammatory disease. Together, these data suggest that TPL2 is a drug target that activates not only MEK1/2-dependent but also MEK3/6-dependent signaling to promote inflammatory responses.


MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Neutrophil Activation , Neutrophils/enzymology , Proto-Oncogene Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Enzyme Activation , Inflammation/enzymology , Inflammation/genetics , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , MAP Kinase Kinase Kinases/genetics , Mice , Mitogen-Activated Protein Kinase 3/genetics , Proto-Oncogene Proteins/genetics , p38 Mitogen-Activated Protein Kinases/genetics
12.
Cell Death Differ ; 24(1): 26-37, 2017 01.
Article En | MEDLINE | ID: mdl-27518435

Proper regulation of cell death signaling is crucial for the maintenance of homeostasis and prevention of disease. A caspase-independent regulated form of cell death called necroptosis is rapidly emerging as an important mediator of a number of human pathologies including inflammatory bowel disease and ischemia-reperfusion organ injury. Activation of necroptotic signaling through TNF signaling or organ injury leads to the activation of kinases receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) and culminates in inflammatory cell death. We found that, in addition to phosphorylation, necroptotic cell death is regulated by ubiquitination of RIP1 in the necrosome. Necroptotic RIP1 ubiquitination requires RIP1 kinase activity, but not necroptotic mediators RIP3 and MLKL (mixed lineage kinase-like). Using immunoaffinity enrichment and mass spectrometry, we profiled numerous ubiquitination events on RIP1 that are triggered during necroptotic signaling. Mutation of a necroptosis-related ubiquitination site on RIP1 reduced necroptotic cell death and RIP1 ubiquitination and phosphorylation, and disrupted the assembly of RIP1 and RIP3 in the necrosome, suggesting that necroptotic RIP1 ubiquitination is important for maintaining RIP1 kinase activity in the necrosome complex. We also observed RIP1 ubiquitination in injured kidneys consistent with a physiological role of RIP1 ubiquitination in ischemia-reperfusion disease. Taken together, these data reveal that coordinated and interdependent RIP1 phosphorylation and ubiquitination within the necroptotic complex regulate necroptotic signaling and cell death.


Apoptosis , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Cell Line , Creatinine/blood , HEK293 Cells , HT29 Cells , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Mice , Nuclear Pore Complex Proteins/deficiency , Nuclear Pore Complex Proteins/genetics , Oligopeptides/pharmacology , Phosphorylation/drug effects , Protein Kinases/metabolism , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
13.
J Mol Biol ; 427(11): 2121-34, 2015 Jun 05.
Article En | MEDLINE | ID: mdl-25861760

Ubiquitination is one of the most prevalent posttranslational modifications in eukaryotic cells, with functional importance in protein degradation, subcellular localization and signal transduction pathways. Immunoaffinity enrichment coupled with quantitative mass spectrometry enables the in-depth characterization of protein ubiquitination events at the site-specific level. We have applied this strategy to investigate cellular response triggered by two distinct type agents: small molecule inhibitors of the tumor-associated kinases MEK and PI3K or the pro-inflammatory cytokine IL-17. Temporal profiling of protein ubiquitination events across a series of time points covering the biological response permits interrogation of signaling through thousands of quantified proteins, of which only a subset display significant and physiologically meaningful regulation. Distinctive clusters of residues within proteins can display distinct temporal patterns attributable to diverse molecular functions, although the majority of differential ubiquitination appears as a coordinated response across the modifiable residues present within an individual substrate. In cells treated with a combination of MEK and PI3K inhibitors, we found differential ubiquitination of MEK within the first hour after treatment and a series of mitochondria proteins at later time points. In the IL-17 signaling pathway, ubiquitination events on several signaling proteins including HOIL-1 and Tollip were observed. The functional relevance of these putative IL-17 mediators was subsequently validated by knockdown of HOIL-1, HOIP and TOLIP, each of which decreased IL-17-stimulated cytokine production. Together, these data validate proteomic profiling of protein ubiquitination as a viable approach for identifying dynamic signaling components in response to intracellular and extracellular perturbations.


Mitochondrial Proteins/metabolism , Proteins/immunology , Proteomics/methods , Tandem Mass Spectrometry/methods , Ubiquitin/metabolism , Apoptosis/drug effects , Azetidines/pharmacology , Cell Line, Tumor/drug effects , DNA Damage/drug effects , Enzyme Inhibitors/pharmacology , Humans , Indazoles/pharmacology , Interleukin-17/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Piperidines/pharmacology , Proteins/metabolism , Signal Transduction , Sulfonamides/pharmacology , Transcription Factors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
14.
Methods Mol Biol ; 1280: 269-82, 2015.
Article En | MEDLINE | ID: mdl-25736754

Precise regulation of survival and signaling pathways is essential for proper maintenance of organismal homeostasis, development, and immune defense. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cellular fate. Cellular IAP1 and IAP2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent degradation of the NF-κB-inducing kinase NIK. In this article, we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining how c-IAPs exert their functional roles.


Inhibitor of Apoptosis Proteins/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , Blotting, Western/methods , Cell Line , Enzyme Activation , Gene Expression , Humans , Immunoprecipitation/methods , Ligands , Mitogen-Activated Protein Kinases/metabolism , RNA, Small Interfering/genetics , Receptors, Tumor Necrosis Factor/agonists , Subcellular Fractions , Transfection
15.
Biochem J ; 466(1): 45-54, 2015 Feb 15.
Article En | MEDLINE | ID: mdl-25423073

Evasion of cell death is one crucial capability acquired by tumour cells to ward-off anti-tumour therapies and represents a fundamental challenge to sustaining clinical efficacy for currently available agents. Inhibitor of apoptosis (IAP) proteins use their ubiquitin E3 ligase activity to promote cancer cell survival by mediating proliferative signalling and blocking cell death in response to diverse stimuli. Using immunoaffinity enrichment and MS, ubiquitination sites on thousands of proteins were profiled upon initiation of cell death by IAP antagonists in IAP antagonist-sensitive and -resistant breast cancer cell lines. Our analyses identified hundreds of proteins with elevated levels of ubiquitin-remnant [K-GG (Lys-Gly-Gly)] peptides upon activation of cell death by the IAP antagonist BV6. The majority of these were observed in BV6-sensitive, but not-resistant, cells. Among these were known pro-apoptotic regulators, including CYC (cytochrome c), RIP1 (receptor-interacting protein 1) and a selection of proteins known to reside in the mitochondria or regulate NF-κB (nuclear factor κB) signalling. Analysis of early time-points revealed that IAP antagonist treatment stimulated rapid ubiquitination of NF-κB signalling proteins, including TRAF2 [TNF (tumour necrosis factor) receptor-associated factor 2], HOIL-1 (haem-oxidized iron-regulatory protein 2 ubiquitin ligase-1), NEMO (NF-κB essential modifier), as well as c-IAP1 (cellular IAP1) auto-ubiquitination. Knockdown of several NF-κB pathway members reduced BV6-induced cell death and TNF production in sensitive cell lines. Importantly, RIP1 was found to be constitutively ubiquitinated in sensitive breast-cancer cell lines at higher basal level than in resistant cell lines. Together, these data show the diverse and temporally defined roles of protein ubiquitination following IAP-antagonist treatment and provide critical insights into predictive diagnostics that may enhance clinical efficacy.


Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Inhibitor of Apoptosis Proteins/genetics , Oligopeptides/pharmacology , Ubiquitin/genetics , Cell Line, Tumor , Cytochromes c/genetics , Cytochromes c/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Transcription Factors , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
EMBO J ; 32(8): 1103-14, 2013 Apr 17.
Article En | MEDLINE | ID: mdl-23524849

The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability.


Cysteine Endopeptidases/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Signal Transduction , Ubiquitin/metabolism , Animals , Blood Vessels/embryology , Cell Line , Deubiquitinating Enzymes , Humans , Hydrolysis , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Zebrafish/embryology
17.
Biochem J ; 447(3): 427-36, 2012 Nov 01.
Article En | MEDLINE | ID: mdl-22853455

ML-IAP [melanoma IAP (inhibitor of apoptosis)] is an anti-apoptotic protein that is expressed highly in melanomas where it contributes to resistance to apoptotic stimuli. The anti-apoptotic activity and elevated expression of IAP family proteins in many human cancers makes IAP proteins attractive targets for inhibition by cancer therapeutics. Small-molecule IAP antagonists that bind with high affinities to select BIR (baculovirus IAP repeat) domains have been shown to stimulate auto-ubiquitination and rapid proteasomal degradation of c-IAP1 (cellular IAP1) and c-IAP2 (cellular IAP2). In the present paper, we report ML-IAP proteasomal degradation in response to bivalent, but not monovalent, IAP antagonists. This degradation required ML-IAP ubiquitin ligase activity and was independent of c-IAP1 or c-IAP2. Although ML-IAP is best characterized in melanoma cells, we show that ML-IAP expression in normal mammalian tissues is restricted largely to the eye, being most abundant in ciliary body epithelium and retinal pigment epithelium. Surprisingly, given this pattern of expression, gene-targeted mice lacking ML-IAP exhibited normal intraocular pressure as well as normal retinal structure and function. The results of the present study indicate that ML-IAP is dispensable for both normal mouse development and ocular homoeostasis.


Adaptor Proteins, Signal Transducing/physiology , Eye/metabolism , Inhibitor of Apoptosis Proteins/physiology , Neoplasm Proteins/physiology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Eye/blood supply , Female , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , Intraocular Pressure , Male , Melanoma , Mice , Mice, Mutant Strains , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Organ Specificity , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Protein Structure, Tertiary , Retina/anatomy & histology , Retina/physiology , Ubiquitin-Protein Ligases/metabolism
18.
Sci Signal ; 5(216): ra22, 2012 Mar 20.
Article En | MEDLINE | ID: mdl-22434933

Tumor necrosis factor (TNF) family members are essential for the development and proper functioning of the immune system. TNF receptor (TNFR) signaling is mediated through the assembly of protein signaling complexes that activate the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in a ubiquitin-dependent manner. The cellular inhibitor of apoptosis (c-IAP) proteins c-IAP1 and c-IAP2 are E3 ubiquitin ligases that are recruited to TNFR signaling complexes through their constitutive association with the adaptor protein TNFR-associated factor 2 (TRAF2). We demonstrated that c-IAP1 and c-IAP2 were required for canonical activation of NF-κB and MAPK by members of the TNFR family. c-IAPs were required for the recruitment of inhibitor of κB kinase ß (IKKß), the IKK regulatory subunit NF-κB essential modulator (NEMO), and RBCK1/Hoil1-interacting protein (HOIP) to TNFR signaling complexes and the induction of gene expression by TNF family members. In contrast, TNFRs that stimulated the noncanonical NF-κB pathway triggered translocation of c-IAPs, TRAF2, and TRAF3 from the cytosol to membrane fractions, which led to their proteasomal and lysosomal degradation. Finally, we established that signaling by B cell-activating factor receptor 3 induced the cytosolic depletion of TRAF3, which enabled noncanonical NF-κB activation. These results define c-IAP proteins as critical regulators of the activation of NF-κB and MAPK signaling pathways by members of the TNFR superfamily.


Inhibitor of Apoptosis Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/immunology , Tumor Necrosis Factors/metabolism , Blotting, Western , Carrier Proteins/metabolism , Cell Line, Tumor , Gene Silencing , Humans , I-kappa B Kinase/metabolism , Inhibitor of Apoptosis Proteins/immunology , Protein Transport , RNA, Small Interfering/genetics , Receptors, Interleukin-4/metabolism , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factors/immunology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases
19.
J Med Chem ; 55(9): 4101-13, 2012 May 10.
Article En | MEDLINE | ID: mdl-22413863

A series of compounds were designed and synthesized as antagonists of cIAP1/2, ML-IAP, and XIAP based on the N-terminus, AVPI, of mature Smac. Compound 1 (GDC-0152) has the best profile of these compounds; it binds to the XIAP BIR3 domain, the BIR domain of ML-IAP, and the BIR3 domains of cIAP1 and cIAP2 with K(i) values of 28, 14, 17, and 43 nM, respectively. These compounds promote degradation of cIAP1, induce activation of caspase-3/7, and lead to decreased viability of breast cancer cells without affecting normal mammary epithelial cells. Compound 1 inhibits tumor growth when dosed orally in the MDA-MB-231 breast cancer xenograft model. Compound 1 was advanced to human clinical trials, and it exhibited linear pharmacokinetics over the dose range (0.049 to 1.48 mg/kg) tested. Mean plasma clearance in humans was 9 ± 3 mL/min/kg, and the volume of distribution was 0.6 ± 0.2 L/kg.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Baculoviral IAP Repeat-Containing 3 Protein , Binding, Competitive , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Clinical Trials, Phase I as Topic , Female , Humans , Inhibitor of Apoptosis Proteins/metabolism , Male , Thiadiazoles/chemistry , Thiadiazoles/pharmacokinetics , Ubiquitin-Protein Ligases
20.
Science ; 334(6054): 376-80, 2011 Oct 21.
Article En | MEDLINE | ID: mdl-22021857

Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.


Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/chemistry , Amino Acid Sequence , Animals , Cell Line , Cell Line, Tumor , Cloning, Molecular , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitor of Apoptosis Proteins/metabolism , Mice , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Scattering, Small Angle , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/metabolism , Ubiquitination
...