Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38313254

RESUMEN

Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.

2.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928301

RESUMEN

Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Transporte Axonal/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Mutación
3.
Nat Rev Mol Cell Biol ; 24(3): 167-185, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36302887

RESUMEN

Autophagy is a process that targets various intracellular elements for degradation. Autophagy can be non-selective - associated with the indiscriminate engulfment of cytosolic components - occurring in response to nutrient starvation and is commonly referred to as bulk autophagy. By contrast, selective autophagy degrades specific targets, such as damaged organelles (mitophagy, lysophagy, ER-phagy, ribophagy), aggregated proteins (aggrephagy) or invading bacteria (xenophagy), thereby being importantly involved in cellular quality control. Hence, not surprisingly, aberrant selective autophagy has been associated with various human pathologies, prominently including neurodegeneration and infection. In recent years, considerable progress has been made in understanding mechanisms governing selective cargo engulfment in mammals, including the identification of ubiquitin-dependent selective autophagy receptors such as p62, NBR1, OPTN and NDP52, which can bind cargo and ubiquitin simultaneously to initiate pathways leading to autophagy initiation and membrane recruitment. This progress opens the prospects for enhancing selective autophagy pathways to boost cellular quality control capabilities and alleviate pathology.


Asunto(s)
Macroautofagia , Proteínas , Animales , Humanos , Proteínas/metabolismo , Autofagia , Ubiquitina/metabolismo , Mamíferos/metabolismo
4.
Front Cell Neurosci ; 16: 844211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573838

RESUMEN

Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aß) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aß aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.

5.
Curr Opin Cell Biol ; 74: 97-103, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35220080

RESUMEN

Neuronal homeostasis requires the transport of various organelles to distal compartments and defects in this process lead to neurological disorders. Although several mechanisms for the delivery of organelles to axons and dendrites have been elucidated, exactly how this process is orchestrated is not well-understood. In this review, we discuss the recent literature supporting a novel paradigm - the co-shuttling of mRNAs with different membrane-bound organelles. This model postulates that the tethering of ribonucleoprotein complexes to endolysosomes and mitochondria allows for the spatiotemporal coupling of organelle transport and the delivery of transcripts to axons. Subcellular translation of these "hitchhiking" transcripts may thus provide a proximal source of proteins required for the maintenance and function of organelles in axons.


Asunto(s)
Axones , Orgánulos , Axones/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Orgánulos/genética , Orgánulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853401

RESUMEN

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Relacionadas con la Autofagia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células HeLa , Humanos , Mitocondrias/química , Mitocondrias/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Peroxisomas/química , Peroxisomas/genética , Fosforilación , Proteínas Quinasas/genética , Multimerización de Proteína , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
7.
Neurology ; 90(12): e1047-e1056, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29453245

RESUMEN

OBJECTIVE: To examine clinicopathologic correlations in early vs late age at onset frontotemporal dementia (FTD) and frontotemporal lobar degeneration (FTLD). METHODS: All patients were clinically evaluated and prospectively diagnosed at the UCSF Memory and Aging Center. Two consecutive series were included: (1) patients with a clinically diagnosed FTD syndrome who underwent autopsy (cohort 1) and (2) patients with a primary pathologic diagnosis of FTLD, regardless of the clinical syndrome (cohort 2). These series were divided by age at symptom onset (cutoff 65 years). RESULTS: In cohort 1, 48 (25.3%) were 65 years or older at symptom onset. Pathologic causes of behavioral variant FTD (bvFTD) were similar in the early age at onset (EO) and late age at onset (LO) bvFTD groups. In corticobasal syndrome (CBS), however, the most common pathologic substrate differed according to age at onset: progressive supranuclear palsy (42.9%) in LO-CBS and Alzheimer disease (AD; 40.7%) in EO-CBS. In cohort 2, 57 (28.4%) were classified as LO-FTLD. Regarding FTLD major molecular classes, FTLD with transactive response DNA-binding protein of 43 kDa was most common in EO-FTLD (44.4%), whereas FTLD-tau (58.3%) was most common in LO-FTLD. Antemortem diagnosis of a non-FTD syndrome, usually AD-type dementia, was more frequent in LO-FTLD than EO-FTLD (19.3% vs 7.7%, p = 0.017). LO-FTLD was also associated with more prevalent comorbid pathologic changes. Of these, moderate to severe AD neuropathologic change and argyrophilic grain disease were overrepresented among patients who received an antemortem diagnosis of AD-type dementia. CONCLUSION: Patients with FTD and FTLD often develop symptoms after age 65, and age at onset represents an important consideration when making antemortem neuropathologic predictions.


Asunto(s)
Encéfalo/patología , Degeneración Lobar Frontotemporal/epidemiología , Degeneración Lobar Frontotemporal/patología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Comorbilidad , Errores Diagnósticos , Femenino , Degeneración Lobar Frontotemporal/diagnóstico , Humanos , Masculino , Prevalencia , Estudios Prospectivos , Parálisis Supranuclear Progresiva/diagnóstico , Parálisis Supranuclear Progresiva/epidemiología , Parálisis Supranuclear Progresiva/patología
8.
Brain ; 140(12): 3329-3345, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053860

RESUMEN

Accurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data.


Asunto(s)
Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Demencia Frontotemporal/patología , Enfermedad de Pick/patología , Parálisis Supranuclear Progresiva/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/psicología , Autopsia , Encéfalo/diagnóstico por imagen , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/psicología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/psicología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Enfermedad de Pick/diagnóstico por imagen , Enfermedad de Pick/psicología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/psicología
9.
J Cell Biol ; 216(10): 3231-3247, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28893839

RESUMEN

Within the mitochondrial matrix, protein aggregation activates the mitochondrial unfolded protein response and PINK1-Parkin-mediated mitophagy to mitigate proteotoxicity. We explore how autophagy eliminates protein aggregates from within mitochondria and the role of mitochondrial fission in mitophagy. We show that PINK1 recruits Parkin onto mitochondrial subdomains after actinonin-induced mitochondrial proteotoxicity and that PINK1 recruits Parkin proximal to focal misfolded aggregates of the mitochondrial-localized mutant ornithine transcarbamylase (ΔOTC). Parkin colocalizes on polarized mitochondria harboring misfolded proteins in foci with ubiquitin, optineurin, and LC3. Although inhibiting Drp1-mediated mitochondrial fission suppresses the segregation of mitochondrial subdomains containing ΔOTC, it does not decrease the rate of ΔOTC clearance. Instead, loss of Drp1 enhances the recruitment of Parkin to fused mitochondrial networks and the rate of mitophagy as well as decreases the selectivity for ΔOTC during mitophagy. These results are consistent with a new model that, instead of promoting mitophagy, fission protects healthy mitochondrial domains from elimination by unchecked PINK1-Parkin activity.


Asunto(s)
Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Modelos Biológicos , Agregado de Proteínas/fisiología , Proteínas de Ciclo Celular , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte de Membrana , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Mol Cell Neurosci ; 80: 32-43, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28161363

RESUMEN

In previous studies, we identified a putative 38-nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the cytochrome c oxidase subunit IV (COXIV) mRNA that was necessary and sufficient for the axonal localization of the message in primary superior cervical ganglion (SCG) neurons. However, little is known about the proteins that interact with the COXIV-zipcode and regulate the axonal trafficking and local translation of the COXIV message. To identify proteins involved in the axonal transport of the COXIV mRNA, we used the biotinylated 38-nucleotide COXIV RNA zipcode as bait in the affinity purification of COXIV zipcode binding proteins. Gel-shift assays of the biotinylated COXIV zipcode indicated that the putative stem-loop structure functions as a nucleation site for the formation of ribonucleoprotein complexes. Mass spectrometric analysis of the COXIV zipcode ribonucleoprotein complex led to the identification of a large number RNA binding proteins, including fused in sarcoma/translated in liposarcoma (FUS/TLS), and Y-box protein 1 (YB-1). Validation experiments, using western analyses, confirmed the presence of the candidate proteins in the COXIV zipcode affinity purified complexes obtained from SCG axons. Immunohistochemical studies show that FUS, and YB-1 are present in SCG axons. Importantly, RNA immunoprecipitation studies show that FUS, and YB-1 interact with endogenous axonal COXIV transcripts. siRNA-mediated downregulation of the candidate proteins FUS and YB-1 expression in the cell-bodies diminishes the levels of COXIV mRNA in the axon, suggesting functional roles for these proteins in the axonal trafficking of COXIV mRNA.


Asunto(s)
Axones/metabolismo , Complejo IV de Transporte de Electrones/genética , Neuronas/citología , ARN Mensajero/metabolismo , Ganglio Cervical Superior/citología , Animales , Animales Recién Nacidos , Células Cultivadas , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección , Tretinoina/farmacología , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
11.
Brain ; 139(Pt 12): 3202-3216, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27797809

RESUMEN

SEE SCABER AND TALBOT DOI101093/AWW264 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: A GGGGCC repeat expansion in C9orf72 leads to frontotemporal dementia and/or amyotrophic lateral sclerosis. Diverse pathological features have been identified, and their disease relevance remains much debated. Here, we describe two illuminating patients with frontotemporal dementia due to the C9orf72 repeat expansion. Case 1 was a 65-year-old female with behavioural variant frontotemporal dementia accompanied by focal degeneration in subgenual anterior cingulate cortex, amygdala, and medial pulvinar thalamus. At autopsy, widespread RNA foci and dipeptide repeat protein inclusions were observed, but TDP-43 pathology was nearly absent, even in degenerating brain regions. Case 2 was a 74-year-old female with atypical frontotemporal dementia-motor neuron disease who underwent temporal lobe resection for epilepsy 5 years prior to her first frontotemporal dementia symptoms. Archival surgical resection tissue contained RNA foci, dipeptide repeat protein inclusions, and loss of nuclear TDP-43 but no TDP-43 inclusions despite florid TDP-43 inclusions at autopsy 8 years after first symptoms. These findings suggest that C9orf72-specific phenomena may impact brain structure and function and emerge before first symptoms and TDP-43 aggregation.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Proteínas/genética , Anciano , Proteína C9orf72 , Proteínas de Unión al ADN/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/fisiopatología , Humanos
12.
Cell Mol Life Sci ; 73(22): 4327-4340, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27229124

RESUMEN

MicroRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons, and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can locally be processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatiotemporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs.


Asunto(s)
Axones/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Precursores del ARN/metabolismo , Transporte de ARN , Animales , Proteínas del Citoesqueleto/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , Unión Proteica , Ratas Sprague-Dawley , Ribonucleasa III/metabolismo , Ganglio Cervical Superior/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...