Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article En | MEDLINE | ID: mdl-34493665

At present, the QT interval on the electrocardiographic (ECG) waveform is the most common metric for assessing an individual's susceptibility to ventricular arrhythmias, with a long QT, or, at the cellular level, a long action potential duration (APD) considered high risk. However, the limitations of this simple approach have long been recognized. Here, we sought to improve prediction of arrhythmia susceptibility by combining mechanistic mathematical modeling with machine learning (ML). Simulations with a model of the ventricular myocyte were performed to develop a large heterogenous population of cardiomyocytes (n = 10,586), and we tested each variant's ability to withstand three arrhythmogenic triggers: 1) block of the rapid delayed rectifier potassium current (IKr Block), 2) augmentation of the L-type calcium current (ICaL Increase), and 3) injection of inward current (Current Injection). Eight ML algorithms were trained to predict, based on simulated AP features in preperturbed cells, whether each cell would develop arrhythmic dynamics in response to each trigger. We found that APD can accurately predict how cells respond to the simple Current Injection trigger but cannot effectively predict the response to IKr Block or ICaL Increase. ML predictive performance could be improved by incorporating additional AP features and simulations of additional experimental protocols. Importantly, we discovered that the most relevant features and experimental protocols were trigger specific, which shed light on the mechanisms that promoted arrhythmia formation in response to the triggers. Overall, our quantitative approach provides a means to understand and predict differences between individuals in arrhythmia susceptibility.


Arrhythmias, Cardiac/prevention & control , Electrophysiological Phenomena/physiology , Forecasting/methods , Action Potentials , Anti-Arrhythmia Agents/pharmacology , Disease Susceptibility , Heart Ventricles/metabolism , Humans , Long QT Syndrome , Machine Learning , Models, Theoretical , Muscle Cells , Myocytes, Cardiac/metabolism , Potassium/metabolism , Potassium Channels/physiology
2.
CPT Pharmacometrics Syst Pharmacol ; 10(2): 100-107, 2021 02.
Article En | MEDLINE | ID: mdl-33205613

Many drugs that have been proposed for treatment of coronavirus disease 2019 (COVID-19) are reported to cause cardiac adverse events, including ventricular arrhythmias. In order to properly weigh risks against potential benefits, particularly when decisions must be made quickly, mathematical modeling of both drug disposition and drug action can be useful for predicting patient response and making informed decisions. Here, we explored the potential effects on cardiac electrophysiology of four drugs proposed to treat COVID-19: lopinavir, ritonavir, chloroquine, and azithromycin, as well as combination therapy involving these drugs. Our study combined simulations of pharmacokinetics (PKs) with quantitative systems pharmacology (QSP) modeling of ventricular myocytes to predict potential cardiac adverse events caused by these treatments. Simulation results predicted that drug combinations can lead to greater cellular action potential prolongation, analogous to QT prolongation, compared with drugs given in isolation. The combination effect can result from both PK and pharmacodynamic drug interactions. Importantly, simulations of different patient groups predicted that women with pre-existing heart disease are especially susceptible to drug-induced arrhythmias, compared with diseased men or healthy individuals of either sex. Statistical analysis of population simulations revealed the molecular factors that make certain women with heart failure especially susceptible to arrhythmias. Overall, the results illustrate how PK and QSP modeling may be combined to more precisely predict cardiac risks of COVID-19 therapies.


Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , COVID-19 Drug Treatment , Models, Theoretical , Therapies, Investigational/methods , Action Potentials/drug effects , Action Potentials/physiology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Azithromycin/administration & dosage , Azithromycin/adverse effects , COVID-19/metabolism , Chloroquine/administration & dosage , Chloroquine/adverse effects , Drug Combinations , Drug Interactions/physiology , Drug Therapy, Combination , Female , Humans , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Risk Factors , Ritonavir/administration & dosage , Ritonavir/adverse effects
3.
medRxiv ; 2020 May 26.
Article En | MEDLINE | ID: mdl-32511528

Many drugs that have been proposed for treatment of COVID-19 are reported to cause cardiac adverse events, including ventricular arrhythmias. In order to properly weigh risks against potential benefits, particularly when decisions must be made quickly, mathematical modeling of both drug disposition and drug action can be useful for predicting patient response and making informed decisions. Here we explored the potential effects on cardiac electrophysiology of 4 drugs proposed to treat COVID-19: lopinavir, ritonavir, chloroquine, and azithromycin, as well as combination therapy involving these drugs. Our study combined simulations of pharmacokinetics (PK) with quantitative systems pharmacology (QSP) modeling of ventricular myocytes to predict potential cardiac adverse events caused by these treatments. Simulation results predicted that drug combinations can lead to greater cellular action potential prolongation, analogous to QT prolongation, compared with drugs given in isolation. The combination effect can result from both pharmacokinetic and pharmacodynamic drug interactions. Importantly, simulations of different patient groups predicted that females with pre-existing heart disease are especially susceptible to drug-induced arrhythmias, compared males with disease or healthy individuals of either sex. Overall, the results illustrate how PK and QSP modeling may be combined to more precisely predict cardiac risks of COVID-19 therapies.

4.
Circ Arrhythm Electrophysiol ; 11(10): e006558, 2018 10.
Article En | MEDLINE | ID: mdl-30354408

BACKGROUND: The slow and rapid delayed rectifier K+ currents (IKs and IKr, respectively) are responsible for repolarizing the ventricular action potential (AP) and preventing abnormally long APs that may lead to arrhythmias. Although differences in biophysical properties of the 2 currents have been carefully documented, the respective physiological roles of IKr and IKs are less established. In this study, we sought to understand the individual roles of these currents and quantify how effectively each stabilizes the AP and protects cells against arrhythmias across multiple species. METHODS: We compared 10 mathematical models describing ventricular myocytes from human, rabbit, dog, and guinea pig. We examined variability within heterogeneous cell populations, tested the susceptibility of cells to proarrhythmic behavior, and studied how IKs and IKr responded to changes in the AP. RESULTS: We found that (1) models with higher baseline IKs exhibited less cell-to-cell variability in AP duration; (2) models with higher baseline IKs were less susceptible to early afterdepolarizations induced by depolarizing perturbations; (3) as AP duration is lengthened, IKs increases more profoundly than IKr, thereby providing negative feedback that resists excessive AP prolongation; and (4) the increase in IKs that occurs during ß-adrenergic stimulation is critical for protecting cardiac myocytes from early afterdepolarizations under these conditions. CONCLUSIONS: Slow delayed rectifier current is uniformly protective across a variety of cell types. These results suggest that IKs enhancement could potentially be an effective antiarrhythmic strategy.


Action Potentials , Arrhythmias, Cardiac/prevention & control , Delayed Rectifier Potassium Channels/metabolism , Heart Rate , Heart Ventricles/metabolism , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Action Potentials/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Computer Simulation , Dogs , Guinea Pigs , Heart Rate/drug effects , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Humans , Myocytes, Cardiac/drug effects , Rabbits , Species Specificity , Time Factors
...