Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EFSA J ; 21(Suppl 1): e211013, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38047126

RESUMEN

The food and feed sector in Europe is rapidly evolving to address contemporary challenges, striving for fairer, safer, greener and more sustainable food systems. This includes the exploration of new protein sources for human consumption and animal feed such as protein derived from insects, algae or novel plant-derived proteins, and the re-evaluation of existing sources like processed animal protein (PAP). To generate reliable data on the diverse array of emerging protein sources for future food and feed safety assessments, a growing demand for the development and implementation of advanced analytical techniques exists. New approach methodologies (NAMs) including, mass spectrometry (MS)-based proteomics methods have been emerging as valuable techniques which potentially can be implemented in regulatory laboratory settings to complement conventional approaches in this realm. These MS-driven strategies have already proven their utility in diverse applications, including the detection of prohibited substances in feed, identification of allergens, differentiation of fish species in complex mixtures for fraud detection and the verification of novel foods and alternative protein sources. This EU-FORA programme was focused on three core objectives namely: (i) the training of the fellow in utilising MS-based proteomics for food and feed safety analyses, (ii) the involvement of the fellow in the development of standardised operating procedures (SOP) for targeted and non-targeted proteomic MS-based workflows for species and tissues specific PAP identification in a national reference laboratory (NRL) and (iii) the transfer and implementation of MS-based approaches and standardised protocols for PAP analysis at the fellow's home institution. Altogether, this programme facilitates the broadening and diversification of use of MS-based proteomic methodologies for reinforcing their significance within the domains of food and feed safety research and regulatory science applications.

2.
J Proteome Res ; 22(2): 514-519, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36173614

RESUMEN

It has long been known that biological species can be identified from mass spectrometry data alone. Ten years ago, we described a method and software tool, compareMS2, for calculating a distance between sets of tandem mass spectra, as routinely collected in proteomics. This method has seen use in species identification and mixture characterization in food and feed products, as well as other applications. Here, we present the first major update of this software, including a new metric, a graphical user interface and additional functionality. The data have been deposited to ProteomeXchange with dataset identifier PXD034932.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Algoritmos
3.
Sci Rep ; 12(1): 567, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022439

RESUMEN

Atlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon. A marine protein base diet and a mixed marine and plant protein base diet were tested, where conventional proteins were replaced with increasing inclusion levels of torula yeast, (0%, 10%, 20%). This study demonstrated that 20% torula yeast can replace fish meal without alteration to growth performance while leading to potential benefits for the gut microbiome by increasing the presence of bacteria positively associated with the host. However, when torula yeast replaced plant meal in a mixed protein diet, results suggested that 10% inclusion of yeast produced the best growth performance results but at the 20% inclusion level of yeast, potentially negative changes were observed in the gut microbial community, such as a decrease in lactic acid bacteria. This study supports the continued investigation of torula yeast for Atlantic salmon as a partial replacement for conventional proteins.


Asunto(s)
Acuicultura , Candida , Proteínas en la Dieta , Microbioma Gastrointestinal , Salmo salar/crecimiento & desarrollo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Salmo salar/microbiología
4.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29079626

RESUMEN

Pseudomonas sp. strains C5pp and C7 degrade carbaryl as the sole carbon source. Carbaryl hydrolase (CH) catalyzes the hydrolysis of carbaryl to 1-naphthol and methylamine. Bioinformatic analysis of mcbA, encoding CH, in C5pp predicted it to have a transmembrane domain (Tmd) and a signal peptide (Sp). In these isolates, the activity of CH was found to be 4- to 6-fold higher in the periplasm than in the cytoplasm. The recombinant CH (rCH) showed 4-fold-higher activity in the periplasm of Escherichia coli The deletion of Tmd showed activity in the cytoplasmic fraction, while deletion of both Tmd and Sp (Tmd+Sp) resulted in expression of the inactive protein. Confocal microscopic analysis of E. coli expressing a (Tmd+Sp)-green fluorescent protein (GFP) fusion protein revealed the localization of GFP into the periplasm. Altogether, these results indicate that Tmd probably helps in anchoring of polypeptide to the inner membrane, while Sp assists folding and release of CH in the periplasm. The N-terminal sequence of the mature periplasmic CH confirms the absence of the Tmd+Sp region and confirms the signal peptidase cleavage site as Ala-Leu-Ala. CH purified from strains C5pp, C7, and rCHΔ(Tmd)a were found to be monomeric with molecular mass of ∼68 to 76 kDa and to catalyze hydrolysis of the ester bond with an apparent Km and Vmax in the range of 98 to 111 µM and 69 to 73 µmol · min-1 · mg-1, respectively. The presence of low-affinity CH in the periplasm and 1-naphthol-metabolizing enzymes in the cytoplasm of Pseudomonas spp. suggests the compartmentalization of the metabolic pathway as a strategy for efficient degradation of carbaryl at higher concentrations without cellular toxicity of 1-naphthol.IMPORTANCE Proteins in the periplasmic space of bacteria play an important role in various cellular processes, such as solute transport, nutrient binding, antibiotic resistance, substrate hydrolysis, and detoxification of xenobiotics. Carbaryl is one of the most widely used carbamate pesticides. Carbaryl hydrolase (CH), the first enzyme of the degradation pathway which converts carbaryl to 1-naphthol, was found to be localized in the periplasm of Pseudomonas spp. Predicted transmembrane domain and signal peptide sequences of Pseudomonas were found to be functional in Escherichia coli and to translocate CH and GFP into the periplasm. The localization of low-affinity CH into the periplasm indicates controlled formation of toxic and recalcitrant 1-naphthol, thus minimizing its accumulation and interaction with various cellular components and thereby reducing the cellular toxicity. This study highlights the significance of compartmentalization of metabolic pathway enzymes for efficient removal of toxic compounds.


Asunto(s)
Carbaril/metabolismo , Hidrolasas/genética , Insecticidas/metabolismo , Redes y Vías Metabólicas/genética , Periplasma/enzimología , Pseudomonas/enzimología , Pseudomonas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolasas/química , Hidrolasas/aislamiento & purificación , Metilaminas/metabolismo , Naftoles/metabolismo , Periplasma/fisiología , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Microbiología del Suelo
5.
Arch Microbiol ; 199(6): 907-916, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28374062

RESUMEN

Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl- ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.


Asunto(s)
Carbaril/metabolismo , Insecticidas/metabolismo , Pseudomonas/metabolismo , Cloruro de Sodio/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dioxigenasas/genética , Dioxigenasas/metabolismo , Gentisatos/metabolismo , India , Pseudomonas/enzimología , Pseudomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA