Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37375852

RESUMEN

Lycopene is a carotenoid with potential use in the treatment of chronic illnesses. Here, different formulations of lycopene were studied: lycopene-rich extract from red guava (LEG), purified lycopene from red guava (LPG) and a self-emulsifying drug delivery system loaded with LPG (nanoLPG). The effects of administering orally various doses of LEG to hypercholesterolemic hamsters were evaluated regarding the liver function of the animals. The cytotoxicity of LPG in Vero cells was analyzed by a crystal violet assay and by fluorescence microscopy. In addition, nanoLPG was employed in stability tests. LPG and nanoLPG were tested for their cytotoxic effect on human keratinocytes and antioxidant capacity on cells in an endothelial dysfunction model in an isolated rat aorta. Finally, the effect of different nanoLPG concentrations on the expression of immune-related genes (IL-10, TNF-α, COX-2 and IFN-γ) from peripheral blood mononuclear cells (PBMC) using real-time PCR was also analyzed. Results suggest that LEG, despite not being able to improve blood markers indicative of liver function in hypercholesterolemic hamsters, reduced hepatic degenerative changes. Additionally, LPG did not show cytotoxicity in Vero cells. In relation to nanoLPG, the effects produced by heat stress evaluated by Dynamics Light Scattering (DLS) and visually were loss of color, texture change and phase separation after 15 days without interfering with the droplet size, so the formulation proved to be efficient in stabilizing the encapsulated lycopene. Although LPG and nanoLPG showed moderate toxicity to keratinocytes, which may be related to cell lineage characteristics, both revealed potent antioxidant activity. LPG and nanoLPG showed vasoprotective effects in aortic preparations. The gene expression assay indicates that, although no significant differences were observed in the expression of IL-10 and TNF-α, the PBMCs treated with nanoLPG showed a reduction in transcriptional levels of IFN-γ and an increased expression of COX-2. Thus, the work adds evidence to the safety of the use of lycopene by humans and shows that tested formulations, mainly nanoLPG due to its stability, stand out as promising and biosafe products for the treatment of diseases that have oxidative stress and inflammation in their etiopathology.

3.
Antibiotics (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978294

RESUMEN

Antimicrobial resistance is currently one of the greatest threats to global health, food security, and development. In this aspect, medicinal plants have been studied to support the development of viable alternatives to prevent and treat infectious diseases. This study aimed to perform a review of the literature comprising the antimicrobial activity of vegetable species from Brazilian biomes. We selected 67 original scientific publications about extracts, fractions, or isolated molecules from plants in the Brazilian biomes, published between 2016 and 2020 in Pubmed, ScienceDirect, and Scielo. Data demonstrated that 98 plant species, especially collected in the Cerrado, Atlantic Forest, and Caatinga biomes, were tested against 40 fungi and 78 bacterial strains. Bioactive fractions of Eucalyptus globulus methanolic stump wood extract were active against Candida albicans and C. tropicalis (MIC 2.50 µg/mL). The catechin purified from Banisteriopsis argyrophylla leaves had activity against C. glabrata (MIC 2.83 µg/mL) and ethanolic extract obtained from Caryocar coriaceum bark and fruit pulp exhibited MIC of 4.1 µg/mL on Microsporum canis. For bacteria, compounds isolated from the dichloromethane extract of Peritassa campestris, lectin extracted from a saline extract of Portulaca elatior and essential oils of Myrciaria pilosa exhibited significant effect against Bacillus megaterium (MIC 0.78 µg/mL), Pseudomonas aeruginosa (MIC 4.06 µg/mL) and Staphylococcus aureus strains (MIC 5.0 µg/mL), respectively. The findings support the antimicrobial and bioeconomic potential of plants from Brazilian biodiversity and their promising health applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36360918

RESUMEN

Pelvic, perineal, and nervous lesions, which derive principally from pregnancy and childbirth, may lead to pelvic floor dysfunctions, such as organ prolapses and lesions in the nerves and muscles due to muscle expansion and physiology. It is estimated that 70% of women affected by this clinical picture have symptoms that do not respond to the classical treatments with antimuscarinic and anticholinergic drugs. Therefore, resorting to efficient alternatives and less invasive methods is necessary to assist this public health problem that predominantly affects the female population, which is more susceptible to the risk factors. This study aimed to perform an updated and comprehensive literature review focused on the effects of pelvic floor electrical stimulation, considering new perspectives such as a correlation between electric current and site of intervention and other molecular aspects, different from the present reviews that predominantly evaluate urodynamic aspects. For that purpose, PubMed and ScienceDirect databases were used to perform the search, and the Methodi ordinatio method was applied. With well-researched therapeutic effects, electrical stimulation induced promising results in histological, nervous, and molecular evaluations and spinal processes, which showed beneficial results and revealed new perspectives on ways to evoke responses in the lower urinary tract in a non-invasive way. Thus, it is possible to conclude that this type of intervention may be a non-invasive alternative to treat pelvic and perineal dysfunctions.


Asunto(s)
Terapia por Estimulación Eléctrica , Diafragma Pélvico , Embarazo , Femenino , Humanos , Estimulación Eléctrica , Urodinámica , Perineo , Terapia por Ejercicio/métodos
5.
Amino Acids ; 54(5): 733-747, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35279763

RESUMEN

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Asunto(s)
Bombesina , Receptores de Bombesina , Animales , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacología , Mamíferos/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Ratas , Ratas Wistar , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Estómago , Espectrometría de Masas en Tándem
6.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35204241

RESUMEN

The purpose of this review was to collect relevant chemical data about lycopene and its isomers, which can be extracted using different non-polar or polar aprotic solvents by SC-CO2 or biosynthesis as a friendly technique. Lycopene and other carotenoids can be identified and quantified by UV-Vis and HPLC using a C18 or C30 column, while their characterization is possible by UV-Vis, Fluorescence, FTIR, MS, NMR, and DSC assays. Among these techniques, the last four can compare lycopene isomers and identify cis or all-trans-lycopene. FTIR, MS, and NMR techniques are more suitable for the verification of the purity of lycopene extracts due to the signal complexity generated for each isomer, which enables identification by subtle differences. Additionally, some biological activities of lycopene isolated from red vegetables have already been confirmed, such as anti-inflammatory, antioxidant, and cytotoxic activity against cancer cells, probably by activating several pathways. The encapsulation of lycopene in nanoparticles demonstrated an improvement in oral delivery, and ex vivo assessments determined that these nanoparticles had better permeation and low cytotoxicity against human cells with enhanced permeation. These data suggest that lycopene has the potential to be applied in the food and pharmaceutical industries, as well as in cosmetic products.

7.
Int J Biol Macromol ; 191: 1026-1037, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34563578

RESUMEN

Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 µg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.


Asunto(s)
Anacardium/química , Antineoplásicos/administración & dosificación , Antioxidantes/administración & dosificación , Licopeno/administración & dosificación , Nanopartículas/química , Gomas de Plantas/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células HaCaT , Humanos , Licopeno/química , Licopeno/farmacología , Células MCF-7 , Polisacáridos/química , Psidium/química , Ovinos
8.
Carbohydr Polym ; 241: 115260, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32507221

RESUMEN

This study presents a green synthesis route to silver nanoparticles (AgNPs) stabilized with cashew gum (CG) or carboxymethylated cashew gum (CCG) using microwave-assisted synthesis and evaluates their antibacterial activity. The antimicrobial activity was measured by determining the minimum inhibitory concentration (MIC) with Staphylococcus aureus and Escherichia coli. In both cases of the presence of CG and CCG, it was found that higher pH lead to more efficient conversion of silver nitrate to AgNPs with well dispersed, spherical and stable particles as well as low crystallinity. CCG-capped AgNPs were slightly smaller (137.0 and 96.3 nm) than those coated with non-modified gum (144.7 and 100.9 nm). The samples presented promising antibacterial activity, especially on Gram-negative bacteria, resulting in significant membrane damage on treated bacteria in comparison to the untreated control, observed by atomic force microscopy. Thus, a quick and efficient synthesis route was applied to produce CGAgNPs and CCGAgNPs with antimicrobial potential.


Asunto(s)
Anacardium , Antibacterianos , Nanopartículas del Metal , Gomas de Plantas , Plata , Antibacterianos/administración & dosificación , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Microondas , Gomas de Plantas/administración & dosificación , Gomas de Plantas/química , Plata/administración & dosificación , Plata/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
9.
PLoS One ; 10(12): e0145071, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26661890

RESUMEN

Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Anuros/metabolismo , Oligopéptidos/metabolismo , Piel/metabolismo , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/síntesis química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Aorta Torácica/citología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Óxido Nítrico/metabolismo , Oligopéptidos/química , Oligopéptidos/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Prolina/química , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA