Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
FASEB J ; 38(10): e23639, 2024 May 31.
Article En | MEDLINE | ID: mdl-38742798

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Endometrium , Extracellular Vesicles , MicroRNAs , Female , Endometrium/metabolism , Endometrium/cytology , Animals , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Pregnancy , Biosensing Techniques/methods , Embryo Implantation/physiology , Embryo, Mammalian/metabolism
2.
Sci Total Environ ; 931: 172507, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38657818

Dumped Chromium Ore Processing Residue (COPR) at legacy sites poses a threat to health through leaching of toxic Cr(VI) into groundwater. Previous work implicates microbial activity in reducing Cr(VI) to less mobile and toxic Cr(III), but the mechanism has not been explored. To address this question a combined metagenomic and geochemical study was undertaken. Soil samples from below the COPR waste were used to establish anaerobic microcosms which were challenged with Cr(VI), with or without acetate as an electron donor, and incubated for 70 days. Cr was rapidly reduced in both systems, which also reduced nitrate, nitrite then sulfate, but this sequence was accelerated in the acetate amended microcosms. 16S rRNA gene sequencing revealed that the original soil sample was diverse but both microcosm systems became less diverse by the end of the experiment. A high proportion of 16S rRNA gene reads and metagenome-assembled genomes (MAGs) with high completeness could not be taxonomically classified, highlighting the distinctiveness of these alkaline Cr impacted systems. Examination of the coding capacity revealed widespread capability for metal tolerance and Fe uptake and storage, and both populations possessed metabolic capability to degrade a wide range of organic molecules. The relative abundance of genes for fatty acid degradation was 4× higher in the unamended compared to the acetate amended system, whereas the capacity for dissimilatory sulfate metabolism was 3× higher in the acetate amended system. We demonstrate that naturally occurring in situ bacterial populations have the metabolic capability to couple acetate oxidation to sequential reduction of electron acceptors which can reduce Cr(VI) to less mobile and toxic Cr(III), and that microbially produced sulfide may be important in reductive precipitation of chromate. This capability could be harnessed to create a Cr(VI) trap-zone beneath COPR tips without the need to disturb the waste.


Chromium , RNA, Ribosomal, 16S , Soil Microbiology , Chromium/metabolism , Metagenome , Oxidation-Reduction , Biodegradation, Environmental , Soil Pollutants/metabolism , Groundwater/microbiology , Groundwater/chemistry , Bacteria/metabolism
3.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605034

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


RNA Splice Sites , Retinitis Pigmentosa , Spliceosomes , Humans , Spliceosomes/genetics , Spliceosomes/metabolism , Proteomics , RNA Splicing/genetics , Alternative Splicing/genetics , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA, Messenger/metabolism , Mutation , DNA Helicases/metabolism , RNA-Binding Proteins/metabolism
4.
Nat Commun ; 14(1): 300, 2023 01 18.
Article En | MEDLINE | ID: mdl-36653366

Historically, ribosomes were viewed as unchanged homogeneous macromolecular machines with no regulatory capacity for mRNA translation. An emerging concept is that heterogeneity of ribosomal composition exists, exerting a regulatory function or specificity in translational control. This is supported by recent discoveries identifying compositionally distinct specialised ribosomes that actively regulate mRNA translation. Viruses lack their own translational machinery and impose high translational demands on the host during replication. We explore the possibility that KSHV manipulates ribosome biogenesis producing specialised ribosomes which preferentially translate viral transcripts. Quantitative proteomic analysis identified changes in the stoichiometry and composition of precursor ribosomal complexes during the switch from latent to lytic replication. We demonstrate the enhanced association of ribosomal biogenesis factors BUD23 and NOC4L, and the KSHV ORF11 protein, with small ribosomal subunit precursor complexes during lytic replication. BUD23 depletion resulted in significantly reduced viral gene expression, culminating in dramatic reduction of infectious virion production. Ribosome profiling demonstrated BUD23 is essential for reduced association of ribosomes with KSHV uORFs in late lytic genes, required for the efficient translation of the downstream coding sequence. Results provide mechanistic insights into KSHV-mediated manipulation of cellular ribosome composition inducing a population of specialised ribosomes facilitating efficient translation of viral mRNAs.


Herpesvirus 8, Human , Herpesvirus 8, Human/genetics , Virus Replication/genetics , Proteomics , Ribosomes/genetics , Gene Expression Regulation, Viral
5.
BMC Vet Res ; 17(1): 262, 2021 Jul 31.
Article En | MEDLINE | ID: mdl-34332568

BACKGROUND: Vector-borne diseases (VBDs) impact both human and veterinary medicine and pose special public health challenges. The main bacterial vector-borne pathogens (VBPs) of importance in veterinary medicine include Anaplasma spp., Bartonella spp., Ehrlichia spp., and Spotted Fever Group Rickettsia. Taxon-targeted PCR assays are the current gold standard for VBP diagnostics but limitations on the detection of genetically diverse organisms support a novel approach for broader detection of VBPs. We present a methodology for genetic characterization of VBPs using Next-Generation Sequencing (NGS) and computational approaches. A major advantage of NGS is the ability to detect multiple organisms present in the same clinical sample in an unsupervised (i.e. non-targeted) and semi-quantitative way. The Standard Operating Procedure (SOP) presented here combines industry-standard microbiome analysis tools with our ad-hoc bioinformatic scripts to form a complete analysis pipeline accessible to veterinary scientists and freely available for download and use at https://github.com/eltonjrv/microbiome.westernu/tree/SOP . RESULTS: We tested and validated our SOP by mimicking single, double, and triple infections in genomic canine DNA using serial dilutions of plasmids containing the entire 16 S rRNA gene sequence of (A) phagocytophilum, (B) v. berkhoffii, and E. canis. NGS with broad-range 16 S rRNA primers followed by our bioinformatics SOP was capable of detecting these pathogens in biological replicates of different dilutions. These results illustrate the ability of NGS to detect and genetically characterize multi-infections with different amounts of pathogens in a single sample. CONCLUSIONS: Bloodborne microbiomics & metagenomics approaches may help expand the molecular diagnostic toolbox in veterinary and human medicine. In this paper, we present both in vitro and in silico detailed protocols that can be combined into a single workflow that may provide a significant improvement in VBP diagnostics and also facilitate future applications of microbiome research in veterinary medicine.


Bacteria/isolation & purification , Dog Diseases/diagnosis , High-Throughput Nucleotide Sequencing/veterinary , RNA, Ribosomal, 16S/genetics , Vector Borne Diseases/veterinary , Animals , Bacteria/genetics , Dog Diseases/microbiology , Dogs , RNA, Bacterial/genetics , Reproducibility of Results , Vector Borne Diseases/diagnosis , Vector Borne Diseases/microbiology
6.
RNA ; 27(9): 1082-1101, 2021 09.
Article En | MEDLINE | ID: mdl-34193551

The expression of long noncoding RNAs is highly enriched in the human nervous system. However, the function of neuronal lncRNAs in the cytoplasm and their potential translation remains poorly understood. Here we performed Poly-Ribo-Seq to understand the interaction of lncRNAs with the translation machinery and the functional consequences during neuronal differentiation of human SH-SY5Y cells. We discovered 237 cytoplasmic lncRNAs up-regulated during early neuronal differentiation, 58%-70% of which are associated with polysome translation complexes. Among these polysome-associated lncRNAs, we find 45 small ORFs to be actively translated, 17 specifically upon differentiation. Fifteen of 45 of the translated lncRNA-smORFs exhibit sequence conservation within Hominidea, suggesting they are under strong selective constraint in this clade. The profiling of publicly available data sets revealed that 8/45 of the translated lncRNAs are dynamically expressed during human brain development, and 22/45 are associated with cancers of the central nervous system. One translated lncRNA we discovered is LINC01116, which is induced upon differentiation and contains an 87 codon smORF exhibiting increased ribosome profiling signal upon differentiation. The resulting LINC01116 peptide localizes to neurites. Knockdown of LINC01116 results in a significant reduction of neurite length in differentiated cells, indicating it contributes to neuronal differentiation. Our findings indicate cytoplasmic lncRNAs interact with translation complexes, are a noncanonical source of novel peptides, and contribute to neuronal function and disease. Specifically, we demonstrate a novel functional role for LINC01116 during human neuronal differentiation.


Cell Differentiation/genetics , Neurons/metabolism , Polyribosomes/genetics , Protein Biosynthesis , RNA, Long Noncoding/genetics , Base Sequence , Brain/growth & development , Brain/metabolism , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Neurons/cytology , Open Reading Frames , Polyribosomes/metabolism , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , Sequence Analysis, RNA , Tretinoin/pharmacology
7.
Trends Parasitol ; 37(9): 815-830, 2021 09.
Article En | MEDLINE | ID: mdl-33994102

Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.


Eukaryota , Protozoan Proteins , Acetylation , Eukaryota/enzymology , Eukaryota/genetics , Protein Processing, Post-Translational , Protozoan Proteins/metabolism
8.
Endocrinology ; 162(6)2021 06 01.
Article En | MEDLINE | ID: mdl-33693651

The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.


Endometrium/drug effects , Glucose/pharmacology , Insulin/pharmacology , Lab-On-A-Chip Devices , Animals , Cattle , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cells, Cultured , Embryo, Mammalian , Embryonic Development/drug effects , Embryonic Development/genetics , Endometrium/cytology , Endometrium/metabolism , Female , Gene Expression Profiling/instrumentation , Gene Expression Profiling/methods , Pregnancy , Primary Cell Culture/instrumentation , Primary Cell Culture/methods , Proteome/drug effects , Proteome/metabolism , Proteomics/instrumentation , Proteomics/methods , Secretory Pathway/drug effects , Transcriptome/drug effects
9.
J Microbiol Methods ; 188: 106163, 2021 09.
Article En | MEDLINE | ID: mdl-33581169

Accurate detection of vector-borne pathogens (VBPs) is extremely important as the number of reported cases in humans and animals continues to rise in the US and abroad. Validated PCR assays are currently the cornerstone of molecular diagnostics and can achieve excellent analytical sensitivity and specificity. However, the detection of pathogens at low parasitemia still presents a challenge for VBP diagnosis, especially given the very low volume of specimens tested by molecular methods. The objective of this study is to determine if a commercially available microbial enrichment kit, used prior DNA extraction, is capable of expanding the overall microbial community and increasing detectable levels of VBPs in canine blood samples through host DNA depletion. This study used EDTA-whole blood samples from dogs naturally infected with varying parasitemia levels of either Anaplasma phagocytophilum, Babesia gibsoni, or Ehrlichia ewingii. For two VBPs, EDTA-blood samples were diluted to determine the effect of microbial concentration at low parasitemia. Paired EDTA-blood samples from each dog were subjected to traditional, automated DNA extraction with or without the microbial concentrating kit (MolYsis®) prior DNA extraction. Relative amounts of pathogen DNA in paired samples were determined by real-time PCR and Next-Generation Sequencing targeting conserved regions of 16S rRNA (for bacteria) and 18S rRNA (for protozoa). Results from the three molecular methods suggest that the microbial concentrating kit did not improve the detection of VBPs, although significantly reduced the presence of host DNA. Alternative methods for VBP enrichment in clinical samples prior to molecular testing should continue to be investigated, as it may significantly improve clinical sensitivity and reduce the number of false-negative results.


DNA, Bacterial/isolation & purification , DNA, Protozoan/isolation & purification , Dog Diseases/diagnosis , Vector Borne Diseases/diagnosis , Anaplasma/genetics , Anaplasma phagocytophilum , Animals , Bacteria/genetics , Dogs , Ehrlichia/genetics , High-Throughput Nucleotide Sequencing , Microbiota , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Tick-Borne Diseases , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology
10.
J Clin Immunol ; 41(2): 441-457, 2021 02.
Article En | MEDLINE | ID: mdl-33284430

Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a- histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms "type I IFN," "IFNγ signaling pathway," and "immune responses" as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder.


Contracture/genetics , Hearing Loss, Sensorineural/genetics , Histiocytosis, Sinus/genetics , Histiocytosis/genetics , Signal Transduction/genetics , Transcriptome/genetics , Adolescent , Adult , Autoimmune Diseases/genetics , Biomarkers/metabolism , Cytokines/genetics , Female , Gene Expression/genetics , Histiocytes/metabolism , Humans , Inflammation/genetics , Macrophages/metabolism , Male , Middle Aged , Monocytes/metabolism , Nucleoside Transport Proteins/genetics , Young Adult
11.
Front Genet ; 11: 584744, 2020.
Article En | MEDLINE | ID: mdl-33343631

Coronaviruses are highly infectious and common in many species, including in humans, and agricultural and domestic animals. Host responses play an important role in viral entry, replication, assembly, and pathogenesis, although much is still to be understood, particularly host-virus interactions. Feline coronavirus is highly contagious, and ubiquitous in virtually all cat populations. Host-pathogen interactions have not been studied extensively due to the complex pathogenesis and development of clinical disease. Few studies have investigated cellular host responses to feline coronavirus infection, particularly at early time points. Transcriptome studies based on next-generation sequencing have the potential to elucidate the early responses of cells after viral infection and, consequently, give further insight into the pathogenesis of viruses. The current study aims to characterize and compare the viral- and immune-related differentially expressed genes in response to the coronavirus FIPV across different time points in a cell line which is permissive for productive replication versus primary cells implicated in pathogenesis. When comparing host responses in Crandell-Rees Feline Kidney (CRFK) cells to primary macrophages, many differences were observed with regards to expressed genes and their enrichments for both KEGG pathways and GO terms. CRFK cells which are permissive for productive replication of feline infectious peritonitis virus, showed induction of a large network of immunological and virally induced pathways. In contrast, Macrophages did not show similar host responses, with stronger pathway enrichment in downregulated transcripts. This study provides insights to better understand gene transcription in immune cells compared to epithelial cells discerning pathways relevant to pathogenesis in the early stages of infection.

12.
Cells ; 9(6)2020 06 09.
Article En | MEDLINE | ID: mdl-32526950

Feline coronavirus is a highly contagious virus potentially resulting in feline infectious peritonitis (FIP), while the pathogenesis of FIP remains not well understood, particularly in the events leading to the disease. A predominant theory is that the pathogenic FIPV arises from a mutation, so that it could replicate not only in enterocytes of the intestines but also in monocytes, subsequently systemically transporting the virus. The immune status and genetics of affected cats certainly play an important role in the pathogenesis. Considering the importance of genetics and host immune responses in viral infections, the goal of this study was to elucidate host gene expression in macrophages using RNA sequencing. Macrophages from healthy male cats infected with FIPV 79-1146 ex vivo displayed a differential host gene expression. Despite the virus uptake, aligned viral reads did not increase from 2 to 17 h. The overlap of host gene expression among macrophages from different cats was limited, even though viral transcripts were detected in the cells. Interestingly, some of the downregulated genes in all macrophages were involved in immune signaling, while some upregulated genes common for all cats were found to be inhibiting immune activation. Our results highlight individual host responses playing an important role, consistent with the fact that few cats develop feline infectious peritonitis despite a common presence of enteric FCoV.


Coronavirus, Feline/immunology , Feline Infectious Peritonitis/immunology , Feline Infectious Peritonitis/pathology , Macrophages/immunology , Monocytes/immunology , Animals , Cats , Cell Line , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/virology , Gene Expression Regulation , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/cytology , Monocytes/cytology , RNA, Viral/isolation & purification , Sequence Analysis, RNA , Transcriptome/genetics
13.
Sci Rep ; 9(1): 2888, 2019 02 27.
Article En | MEDLINE | ID: mdl-30814563

DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.


Chromatin/metabolism , DNA Helicases/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Origin Recognition Complex/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/growth & development , Chromatin/genetics , DNA Helicases/genetics , DNA-Directed DNA Polymerase/genetics , Humans , Origin Recognition Complex/genetics , Protozoan Proteins/genetics , Replication Origin , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , DNA Polymerase theta
14.
PLoS Negl Trop Dis ; 12(10): e0006873, 2018 10.
Article En | MEDLINE | ID: mdl-30365505

BACKGROUND: The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. METHODOLOGY/PRINCIPAL FINDINGS: Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. CONCLUSIONS/SIGNIFICANCE: The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents.


DNA Replication/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Oviposition/drug effects , Pyridones/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/physiology , Animals , Female , Gene Expression Regulation/drug effects , Locomotion/drug effects , Male , Metabolic Networks and Pathways/drug effects , Microscopy, Electron, Scanning , RNA, Untranslated/metabolism , Schistosoma mansoni/enzymology , Schistosoma mansoni/ultrastructure , Survival Analysis
15.
Database (Oxford) ; 20182018 01 01.
Article En | MEDLINE | ID: mdl-29992321

Long non-coding RNAs (lncRNAs) have been widely discovered in several organisms with the help of high-throughput RNA sequencing. LncRNAs are over 200 nt-long transcripts that do not have protein-coding (PC) potential, having been reported in model organisms to act mainly on the overall control of PC gene expression. Little is known about the functionality of lncRNAs in evolutionarily ancient non-model metazoan organisms, like Schistosoma mansoni, the parasite that causes schistosomiasis, one of the most prevalent infectious-parasitic diseases worldwide. In a recent transcriptomics effort, we identified thousands of S. mansoni lncRNAs predicted to be functional along the course of parasite development. Here, we present an online catalog of each of the S. mansoni lncRNAs whose expression is correlated to PC genes along the parasite life-cycle, which can be conveniently browsed and downloaded through a new web resource http://verjolab.usp.br. We also provide access now to navigation on the co-expression networks disclosed in our previous publication, where we correlated mRNAs and lncRNAs transcriptional patterns across five life-cycle stages/forms, pinpointing biological processes where lncRNAs might act upon.Database URL: http://verjolab.usp.br.


Gene Expression Regulation , Open Reading Frames/genetics , RNA, Long Noncoding/genetics , Schistosoma mansoni/genetics , Animals , Databases, Genetic , Parasites/genetics , RNA, Long Noncoding/metabolism
16.
Poult Sci ; 97(10): 3635-3644, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-30016503

Next-generation DNA sequencing is rapidly becoming a powerful tool for food animal management. One valuable use of this technology is to re-examine long-standing observations of performance differences associated with animal husbandry practices to better understand how these differences may be modulated by the gastrointestinal (GI) microbiome. The influences of environmental parameters such as air temperature and relative humidity on broiler chicken performance have commonly been observed, but how the GI microbiome may respond to seasonal environmental changes remains largely unknown. The purposes of this study were therefore to: (1) characterize the cecal microflora of commercial broilers (N = 87) collected at harvest across all 4 seasons, and (2) identify any significant changes of the GI microbiome and specific taxa according to season and Campylobacter status. Finding taxa with significant positive or negative correlations with Campylobacter could be useful by identifying indicator or antagonistic taxa and could also inform inferences regarding the ecological niche of Campylobacter. Whole GI tracts were removed from commercial broilers representing 87 independent flocks between April 2013 and May 2014 in the U.S. state of Georgia. Intact ceca were separated, cultured for Campylobacter and cecal contents were frozen. The cecal microbiome was characterized using barcoded sequencing of 16S rRNA genes on the Illumina MiSeq platform. The composition of the microbiome measured at processing was generally not affected by Campylobacter status but was most significantly affected by season of grow-out. Significantly fewer bacterial genera were found in winter than spring or summer. Bacterial genera with prior evidence for both positive or negative influences on gut health outcomes were significantly less abundant in the fall. Identifying specific members of the GI microbiota that vary according to season may help develop novel interventions to improve husbandry practices and growth performance.


Bacteria/classification , Campylobacter/isolation & purification , Cecum/microbiology , Chickens/microbiology , Gastrointestinal Microbiome , Animal Husbandry/methods , Animals , DNA, Bacterial/analysis , Georgia , Phylogeny , RNA, Ribosomal, 16S/analysis , Seasons
17.
Vector Borne Zoonotic Dis ; 18(9): 491-499, 2018 09.
Article En | MEDLINE | ID: mdl-29893631

Flea-borne diseases (FBDs) impact both human and animal health worldwide. Because adult fleas are obligately hematophagous and can harbor potential pathogens, fleas act as ectoparasites of vertebrates, as well as zoonotic disease vectors. Cat fleas (Ctenocephalides felis) are important vectors of two zoonotic bacterial genera listed as priority pathogens by the National Institute of Allergy and Infectious Diseases (NIAID-USA): Bartonella spp. and Rickettsia spp., causative agents of bartonelloses and rickettsioses, respectively. In this study, we introduce the first microbiome analysis of C. felis samples from California, determining the presence and abundance of relevant pathogenic genera by characterizing the cat flea microbiome through 16S rRNA next-generation sequencing (16S-NGS). Samples from both northern (NoCal) and southern (SoCal) California were assessed to expand current knowledge regarding FBDs in the state. We identified Rickettsia and Bartonella, as well as the endosymbiont Wolbachia, as the most abundant genera, followed by less abundant taxa. In comparison to our previous study screening Californian cat fleas for rickettsiae using PCR/digestion/sequencing of the ompB gene, the 16S-NGS approach applied herein showed a 95% level of agreement in detecting Rickettsia spp. There was no overall difference in microbiome diversity between NoCal and SoCal samples. Bacterial taxa identified by 16S-NGS in this study may help to improve epidemiological investigations, pathogen surveillance efforts, and clinical diagnostics of FBDs in California and elsewhere.


Bacteria/isolation & purification , Ctenocephalides/microbiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/classification , Bacteria/genetics , California/epidemiology , Cat Diseases/epidemiology , Cat Diseases/parasitology , Cats , DNA, Bacterial/genetics
18.
Sci Rep ; 7(1): 10508, 2017 09 05.
Article En | MEDLINE | ID: mdl-28874839

Next Generation Sequencing (NGS) strategies, like RNA-Seq, have revealed the transcription of a wide variety of long non-coding RNAs (lncRNAs) in the genomes of several organisms. In the present work we assessed the lncRNAs complement of Schistosoma mansoni, the blood fluke that causes schistosomiasis, ranked among the most prevalent parasitic diseases worldwide. We focused on the long intergenic/intervening ncRNAs (lincRNAs), hidden within the large amount of information obtained through RNA-Seq in S. mansoni (88 libraries). Our computational pipeline identified 7029 canonically-spliced putative lincRNA genes on 2596 genomic loci (at an average 2.7 isoforms per lincRNA locus), as well as 402 spliced lncRNAs that are antisense to protein-coding (PC) genes. Hundreds of lincRNAs showed traits for being functional, such as the presence of epigenetic marks at their transcription start sites, evolutionary conservation among other schistosome species and differential expression across five different life-cycle stages of the parasite. Real-time qPCR has confirmed the differential life-cycle stage expression of a set of selected lincRNAs. We have built PC gene and lincRNA co-expression networks, unraveling key biological processes where lincRNAs might be involved during parasite development. This is the first report of a large-scale identification and structural annotation of lncRNAs in the S. mansoni genome.


Genome, Fungal , RNA, Long Noncoding , Schistosoma mansoni/growth & development , Schistosoma mansoni/genetics , Schistosomiasis mansoni/parasitology , Animals , Computational Biology/methods , Epigenesis, Genetic , Gene Expression Profiling , Genomics/methods , Life Cycle Stages , RNA, Helminth , Transcriptome
19.
Anticancer Drugs ; 28(6): 634-644, 2017 07.
Article En | MEDLINE | ID: mdl-28410270

Adrenocortical tumor (ACT) is a malignancy with a low incidence rate and the current therapy for advanced disease has a limited impact on overall patient survival. A previous study from our group suggested that elevated expression of aurora-A and aurora-B is associated with poor outcome in childhood ACT. Similar results were also reported for adult ACTs. The present in-vitro study shows that AMG 900 inhibits aurora kinases in adrenocortical carcinoma cells. AMG 900 inhibited cell proliferation in NCI-H295 cells as well as in the ACT primary cultures and caused apoptosis in the cell line NCI-H295. Furthermore, it potentialized the mitotane, doxorubicin, and etoposide effects on apoptosis induction and acted synergistically with mitotane and doxorubicin in the inhibition of proliferation. In addition, we found that AMG 900 activated Notch signaling and rendered the cells sensitive to the combination of AMG 900 and Notch signaling inhibition. Altogether, these data show that aurora kinases inhibition using AMG 900 may be an adjuvant therapy to treat patients with invasive or recurrent adrenocortical carcinomas.


Adrenal Cortex Neoplasms/drug therapy , Adrenocortical Carcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Adrenal Cortex Neoplasms/enzymology , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/enzymology , Adrenocortical Carcinoma/pathology , Aurora Kinases/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/pharmacology , Dose-Response Relationship, Drug , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Synergism , Histones/metabolism , Humans , Mitotane/administration & dosage , Mitotane/pharmacology , Phosphorylation/drug effects , Phthalazines/administration & dosage , Protein Kinase Inhibitors/administration & dosage
20.
Mol Biochem Parasitol ; 202(2): 1-10, 2015 Aug.
Article En | MEDLINE | ID: mdl-26393539

Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.


Codon, Initiator/genetics , Genes, Protozoan , RNA, Spliced Leader/genetics , Ribosomes/metabolism , Trypanosoma brucei brucei/genetics , Evolution, Molecular , Molecular Sequence Annotation , Open Reading Frames/genetics , Sequence Analysis, RNA
...