RESUMEN
BACKGROUND: Depression is a common, chronic, and often recurrent serious mood disorder. Conventional antidepressants present limitations that stimulate the search for new drugs. Antioxidant and neuroprotective substances are potential antidepressant agents. In this context, riparin I (RIP I) has presented promising results, emerging as a potential source of a new therapeutic drug. In this study, the antidepressant effect of RIP I was evaluated in an animal model of depression induced by corticosterone (CORT). The involvement of neuroprotective and antioxidant mechanisms in the generation of this effect was also assessed. METHODS: Female mice were submitted to CORT for 21 days and treated with RIP I in the last 7 days. Behavioral and neurochemical analyses were performed. RESULTS: The administration of RIP I reversed the depressive and psychotic-like behavior, as well as the cognitive impairment caused by CORT, in addition to regulating oxidative stress parameters and BDNF levels in depression-related brain areas. CONCLUSION: These findings suggest that RIP I can be a strong candidate for drugs in the treatment of depression.
Asunto(s)
Antioxidantes , Corticosterona , Animales , Antioxidantes/farmacología , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , RatonesRESUMEN
OBJECTIVES: Based on this, the central therapeutic effects of thymol were verified in the neurotrophic pathway. METHODS: Female swiss mice were divided into four groups: control, corticosterone (Cort), thymol (Cort + thymol) and fluvoxamine (Cort + Flu). The administration of corticosterone was used to induce depressive symptoms for 23 days. After the treatment, the animals were exposed the behavioural tests, such as forced swimming test, tail suspension test, sucrose preference test, light/dark test, social interaction test, Y-maze test, plus-maze test and hole-board test. The hippocampus was also removed, and BDNF was measured by ELISA and Western blot. KEY FINDINGS: As a result, thymol and fluvoxamine were able to reverse the depressive symptoms, as well as to improve the anxious frame. The anhedonic and short-term memory was restored with the treatment. In the neurochemical tests, both thymol and fluvoxamine restored BDNF levels, improving the depressive condition. CONCLUSIONS: This work opens up new investigations aiming at the use of this molecule as a therapeutic alternative for treating depression disorders.