Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diseases ; 12(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391782

RESUMEN

BACKGROUND: Automated rhythm detection on echocardiography through artificial intelligence (AI) has yet to be fully realized. We propose an AI model trained to identify atrial fibrillation (AF) using apical 4-chamber (AP4) cines without requiring electrocardiogram (ECG) data. METHODS: Transthoracic echocardiography studies of consecutive patients ≥ 18 years old at our tertiary care centre were retrospectively reviewed for AF and sinus rhythm. The study was first interpreted by level III-trained echocardiography cardiologists as the gold standard for rhythm diagnosis based on ECG rhythm strip and imaging assessment, which was also verified with a 12-lead ECG around the time of the study. AP4 cines with three cardiac cycles were then extracted from these studies with the rhythm strip and Doppler information removed and introduced to the deep learning model ResNet(2+1)D with an 80:10:10 training-validation-test split ratio. RESULTS: 634 patient studies (1205 cines) were included. After training, the AI model achieved high accuracy on validation for detection of both AF and sinus rhythm (mean F1-score = 0.92; AUROC = 0.95). Performance was consistent on the test dataset (mean F1-score = 0.94, AUROC = 0.98) when using the cardiologist's assessment of the ECG rhythm strip as the gold standard, who had access to the full study and external ECG data, while the AI model did not. CONCLUSIONS: AF detection by AI on echocardiography without ECG appears accurate when compared to an echocardiography cardiologist's assessment of the ECG rhythm strip as the gold standard. This has potential clinical implications in point-of-care ultrasound and stroke risk stratification.

2.
IEEE Trans Med Imaging ; 39(6): 1868-1883, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31841401

RESUMEN

Uncertainty of labels in clinical data resulting from intra-observer variability can have direct impact on the reliability of assessments made by deep neural networks. In this paper, we propose a method for modelling such uncertainty in the context of 2D echocardiography (echo), which is a routine procedure for detecting cardiovascular disease at point-of-care. Echo imaging quality and acquisition time is highly dependent on the operator's experience level. Recent developments have shown the possibility of automating echo image quality quantification by mapping an expert's assessment of quality to the echo image via deep learning techniques. Nevertheless, the observer variability in the expert's assessment can impact the quality quantification accuracy. Here, we aim to model the intra-observer variability in echo quality assessment as an aleatoric uncertainty modelling regression problem with the introduction of a novel method that handles the regression problem with categorical labels. A key feature of our design is that only a single forward pass is sufficient to estimate the level of uncertainty for the network output. Compared to the 0.11 ± 0.09 absolute error (in a scale from 0 to 1) archived by the conventional regression method, the proposed method brings the error down to 0.09 ± 0.08, where the improvement is statistically significant and equivalents to 5.7% test accuracy improvement. The simplicity of the proposed approach means that it could be generalized to other applications of deep learning in medical imaging, where there is often uncertainty in clinical labels.


Asunto(s)
Ecocardiografía , Redes Neurales de la Computación , Humanos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...