Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Small ; 19(50): e2304954, 2023 Dec.
Article En | MEDLINE | ID: mdl-37594729

Controlling the deposition of spin-crossover (SCO) materials constitutes a crucial step for the integration of these bistable molecular systems in electronic devices. Moreover, the influence of functional surfaces, such as 2D materials, can be determinant on the properties of the deposited SCO film. In this work, ultrathin films of the SCO Hofmann-type coordination polymer [Fe(py)2 {Pt(CN)4 }] (py = pyridine) onto monolayers of 1T and 2H MoS2 polytypes are grown. The resulting hybrid heterostructures are characterized by GIXRD, XAS, XPS, and EXAFS to get information on the structure and the specific interactions generated at the interface, as well as on the spin transition. The use of a layer-by-layer results in SCO/2D heterostructures, with crystalline and well-oriented [Fe(py)2 {Pt(CN)4 }]. Unlike with conventional Au or SiO2 substrates, no intermediate self-assembled monolayer is required, thanks to the surface S atoms. Furthermore, it is observed that the higher presence of Fe3+ in the 2H heterostructures hinders an effective spin transition for [Fe(py)2 {Pt(CN)4 }] films thinner than 8 nm. Remarkably, when using 1T MoS2 , this transition is preserved in films as thin as 4 nm, due to the reducing character of this metallic substrate. These results highlight the active role that 2D materials play as substrates in hybrid molecular/2D heterostructures.

2.
ACS Appl Mater Interfaces ; 13(30): 36475-36481, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-34296594

We present the covalent coating of chemically exfoliated molybdenum disulfide (MoS2) based on the polymerization of functional acryl molecules. The method relies on the efficient diazonium anchoring reaction to provoke the in situ radical polymerization and covalent adhesion of functional coatings. In particular, we successfully implement hydrophobicity on the exfoliated MoS2 in a direct, fast, and quantitative synthetic approach. The covalent functionalization is proved by multiple techniques including X-ray photoelectron spectroscopy and TGA-MS. This approach represents a simple and general protocol to reach dense and homogeneous functional coatings on 2D materials.

...