Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
EMBO Rep ; 25(4): 2118-2143, 2024 Apr.
Article En | MEDLINE | ID: mdl-38499809

Stop codon readthrough (SCR) is the process where translation continues beyond a stop codon on an mRNA. Here, we describe a strategy to enhance or induce SCR in a transcript-selective manner using a CRISPR-dCas13 system. Using specific guide RNAs, we target dCas13 to the region downstream of canonical stop codons of mammalian AGO1 and VEGFA mRNAs, known to exhibit natural SCR. Readthrough assays reveal enhanced SCR of these mRNAs (both exogenous and endogenous) caused by the dCas13-gRNA complexes. This effect is associated with ribosomal pausing, which has been reported for several SCR events. Our data show that CRISPR-dCas13 can also induce SCR across premature termination codons (PTCs) in the mRNAs of green fluorescent protein and TP53. We demonstrate the utility of this strategy in the induction of readthrough across the thalassemia-causing PTC in HBB mRNA and hereditary spherocytosis-causing PTC in SPTA1 mRNA. Thus, CRISPR-dCas13 can be programmed to enhance or induce SCR in a transcript-selective and stop codon-specific manner.


Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Guide, CRISPR-Cas Systems , Animals , Codon, Terminator/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Codon, Nonsense/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Biosynthesis , Mammals/genetics , Mammals/metabolism
2.
J Mol Biol ; 435(21): 168274, 2023 11 01.
Article En | MEDLINE | ID: mdl-37714299

During translation, a stop codon on the mRNA signals the ribosomes to terminate the process. In certain mRNAs, the termination fails due to the recoding of the canonical stop codon, and ribosomes continue translation to generate C-terminally extended protein. This process, termed stop codon readthrough (SCR), regulates several cellular functions. SCR is driven by elements/factors that act immediately downstream of the stop codon. Here, we have analysed the process of SCR using a simple mathematical model to investigate how the kinetics of translating ribosomes influences the efficiency of SCR. Surprisingly, the analysis revealed that the rate of translation inversely regulates the efficiency of SCR. We tested this prediction experimentally in mammalian AGO1 and MTCH2 mRNAs. Reduction in translation either globally by harringtonine or locally by rare codons caused an increase in the efficiency of SCR. Thus, our study has revealed a hitherto unknown mode of regulation of SCR.


Codon, Terminator , Protein Biosynthesis , RNA, Messenger , Ribosomes , Codon, Terminator/genetics , Codon, Terminator/metabolism , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , HEK293 Cells , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
3.
J Biol Chem ; 298(8): 102173, 2022 08.
Article En | MEDLINE | ID: mdl-35752360

Stop codon readthrough (SCR) is the process of continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extensions. SCR has been observed in viruses, fungi, and multicellular organisms, including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that exhibit SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage, and three-nucleotide periodicity of the ribosome profiling reads in the mRNA region downstream of the stop codon provided strong evidence for SCR in mRNAs of 144 genes. We show that SCR generated putative evolutionarily conserved nuclear localization signals, transmembrane helices, and intrinsically disordered regions in the C-terminal extensions of several of these proteins. Furthermore, gene ontology functional enrichment analysis revealed that these 144 genes belong to three major functional groups-translation, photosynthesis, and abiotic stress tolerance. Using a luminescence-based readthrough assay, we experimentally demonstrated SCR in representative mRNAs belonging to each of these functional classes. Finally, using microscopy, we show that the SCR product of one gene that contains a nuclear localization signal at the C-terminal extension, CURT1B, localizes to the nucleus as predicted. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating protein localization and function.


Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Codon, Terminator/metabolism , Mammals/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
4.
Br J Ophthalmol ; 102(6): 848-854, 2018 06.
Article En | MEDLINE | ID: mdl-29478030

BACKGROUND: p53 is a stress-activated tumour suppressor gene, and its mutation has been associated with solid tumours including non-melanoma skin cancers. Sestrin2 expression is associated with DNA damage and oxidative stress and has been described as a downstream target of p53 network. However, its role in sebaceous gland carcinoma (SGC) remains unexplored. OBJECTIVES: To determine the role of p53 and its downstream target gene sestrin2 expression and p53 gene mutation status in SGC. METHODS: Twenty cases of eyelid SGC tumour and circulating cell-free DNA (ccfDNA) were subjected to mutational analysis of p53 gene. p53 and sesrin2 expression was evaluated by immunohistochemistry. Results were correlated with the clinicopathological features of eyelid SGC. RESULTS: p53 gene mutations was detected in 25% of the SGC cases. A C>T transition was identified in exon 6 in a single patient in both tumour and ccfDNA. A G>T transversion leading to amino acid change D259Y was seen in four patients. A splice site mutation affected a single case in exon 6. p53 expression was observed in 55% SGC. Loss of sestrin2 in 55% SGC cases correlated with poor tumour differentiation (P=0.0001), upper eyelid involvement (P=0.004), p53 mutation (P=0.039) and with mutant p53 expression (P=0.0001). CONCLUSION: Sestrin2 expression was found to be significantly reduced in p53 mutated SGC cases and in cases with strong p53 nuclear immunopositivity, suggesting that loss of sestrin2 may be of biological significance in the development of SGC and as a key downstream component of p53 tumour suppression network in eyelid SGC.


Carcinoma , Eyelid Neoplasms , Nuclear Proteins/physiology , Sebaceous Gland Neoplasms , Tumor Suppressor Protein p53/genetics , Aged , Biomarkers, Tumor/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell-Free Nucleic Acids/analysis , DNA Mutational Analysis , Eyelid Neoplasms/genetics , Eyelid Neoplasms/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Nuclear Proteins/metabolism , Sebaceous Gland Neoplasms/genetics , Sebaceous Gland Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism
...