Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Med Chem ; 66(18): 13205-13246, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37712656

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

2.
J Med Chem ; 65(18): 12445-12459, 2022 09 22.
Article En | MEDLINE | ID: mdl-36098485

Huntington's disease (HD) is a lethal autosomal dominant neurodegenerative disorder resulting from a CAG repeat expansion in the huntingtin (HTT) gene. The product of translation of this gene is a highly aggregation-prone protein containing a polyglutamine tract >35 repeats (mHTT) that has been shown to colocalize with histone deacetylase 4 (HDAC4) in cytoplasmic inclusions in HD mouse models. Genetic reduction of HDAC4 in an HD mouse model resulted in delayed aggregation of mHTT, along with amelioration of neurological phenotypes and extended lifespan. To further investigate the role of HDAC4 in cellular models of HD, we have developed bifunctional degraders of the protein and report the first potent and selective degraders of HDAC4 that show an effect in multiple cell lines, including HD mouse model-derived cortical neurons. These degraders act via the ubiquitin-proteasomal pathway and selectively degrade HDAC4 over other class IIa HDAC isoforms (HDAC5, HDAC7, and HDAC9).


Histone Deacetylases , Huntington Disease , Animals , Disease Models, Animal , Drug Development , Histone Deacetylases/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Mice , Neurons/metabolism , Proteolysis , Ubiquitins
3.
Prog Med Chem ; 61: 163-214, 2022.
Article En | MEDLINE | ID: mdl-35753715

Plasma protein binding and tissue binding are arguably two of the most critical parameters that are measured as part of a drug discovery program since, according to the free drug hypothesis, it is the free drug that is responsible for both efficacy and toxicity. This chapter aims to deconstruct the role of plasma protein and tissue binding in drug discovery programs, and to consider the conclusion made by Pfizer and Genentech/Depomed a decade ago that optimising plasma protein binding as an independent parameter does not significantly influence efficacy. This chapter will also examine how binding metrics are applied in drug discovery programs and explore circumstances where optimising plasma protein or tissue binding can be an effective strategy to deliver a candidate molecule for preclinical development with an early indication of sufficient therapeutic index.


Blood Proteins , Drug Discovery , Blood Proteins/metabolism , Protein Binding
4.
J Med Chem ; 64(8): 5018-5036, 2021 04 22.
Article En | MEDLINE | ID: mdl-33783225

Our group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g., 4) failed to afford selectivity over a vacuolar protein sorting 34 (Vps34) kinase, an important kinase involved with autophagy. Given that impaired autophagy has been proposed as a pathogenic mechanism of neurodegenerative diseases such as HD, achieving selectivity over Vps34 became an important objective for our program. Here, we report the successful selectivity optimization of ATM over Vps34 by using X-ray crystal structures of a Vps34-ATM protein chimera where the Vps34 ATP-binding site was mutated to approximate that of an ATM kinase. The morpholino-pyridone and morpholino-pyrimidinone series that resulted as a consequence of this selectivity optimization process have high ATM potency and good oral bioavailability and have lower molecular weight, reduced lipophilicity, higher aqueous solubility, and greater synthetic tractability compared to the pyranone-thioxanthenes.


Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Pyridones/chemistry , Pyrimidinones/chemistry , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Brain/metabolism , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Huntington Disease/drug therapy , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Morpholinos/chemistry , Pyridones/metabolism , Pyridones/therapeutic use , Pyrimidinones/metabolism , Pyrimidinones/therapeutic use , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 12(3): 380-388, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33738065

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, 12) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound 12 exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound 12 in mice to estimate a class I/IIb deacetylation EC50, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout. We observed excellent correlation between the compound 12 in vivo pharmacodynamic response and in vitro class I/IIb cellular activity. Applying the same relationship to class IIa HDAC inhibition, we estimated the compound 12 dose required to inhibit class IIa HDAC activity, for use in preclinical models of Huntington's disease.

6.
J Med Chem ; 62(6): 2988-3008, 2019 03 28.
Article En | MEDLINE | ID: mdl-30840447

Genetic and pharmacological evidence indicates that the reduction of ataxia telangiectasia-mutated (ATM) kinase activity can ameliorate mutant huntingtin (mHTT) toxicity in cellular and animal models of Huntington's disease (HD), suggesting that selective inhibition of ATM could provide a novel clinical intervention to treat HD. Here, we describe the development and characterization of ATM inhibitor molecules to enable in vivo proof-of-concept studies in HD animal models. Starting from previously reported ATM inhibitors, we aimed with few modifications to increase brain exposure by decreasing P-glycoprotein liability while maintaining potency and selectivity. Here, we report brain-penetrant ATM inhibitors that have robust pharmacodynamic (PD) effects consistent with ATM kinase inhibition in the mouse brain and an understandable pharmacokinetic/PD (PK/PD) relationship. Compound 17 engages ATM kinase and shows robust dose-dependent inhibition of X-ray irradiation-induced KAP1 phosphorylation in the mouse brain. Furthermore, compound 17 protects against mHTT (Q73)-induced cytotoxicity in a cortical-striatal cell model of HD.


Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Huntington Disease/drug therapy , Neuroprotective Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Disease Models, Animal , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Proof of Concept Study
7.
Org Lett ; 8(4): 773-6, 2006 Feb 16.
Article En | MEDLINE | ID: mdl-16468764

[reaction: see text] Putative enantioenriched carbenoid species, (R)-1-chloro-2-phenylethylmagnesium chloride (9) and (S)-1-chloro-2-phenylethyllithium (26), generated in situ by sulfoxide ligand exchange from (-)-(R(S),R)-1-chloro-2-phenylethyl p-tolyl sulfoxide (8), effected the stereocontrolled homologation of boronic esters. sec-Alcohols derived from the product boronates by oxidation with basic hydrogen peroxide exhibited % ee closely approaching that of sulfoxide 8 in examples employing Li-carbenoid 26.

...