Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Audiol ; 33(2): 369-378, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38416788

RESUMEN

PURPOSE: Many factors create barriers for early hearing detection and intervention (EHDI), especially those related to unfavorable social determinants of health (SDOH). The primary aim of this study was to evaluate diagnostic timing of infants at risk for congenital hearing loss in consideration of known barriers. Understanding the specific barriers to early diagnosis can inform interventions to improve timeliness of diagnosis and subsequent habilitation. METHOD: A retrospective chart review was completed for infants referred for diagnostic audiologic testing at a tertiary urban-setting Children's Hospital from 2018 to 2021. After exclusion criteria were applied, 1,488 infants were included in the analysis. Various factors were recorded from electronic medical records including those specific to SDOH. Time to diagnosis was derived and compared across five factors of interest that have previously been shown to impact diagnostic timeline, including (a) insurance type, (b) race/ethnicity, (c) presence of middle ear dysfunction at first auditory brainstem response (ABR), (d) proximity to diagnostic center, and (e) diagnostic timing before and during/after the COVID-19 pandemic. RESULTS: Across the study time period, 77% of infants referred for diagnostic testing had confirmed diagnosis by the EHDI benchmark of 3 months. Analysis of time to diagnosis across factors of interest revealed no clinically significant differences for insurance type, race/ethnicity, proximity to diagnostic center, or timing in reference to the COVID-19 pandemic. Presence of middle ear dysfunction on first ABR was found to significantly protract final diagnostic timing. CONCLUSIONS: Although some known barriers for EHDI can be universal, other factors may have a differential impact on an infant's timeline to diagnosis based on their specific location, which can interact differently with additional known barriers. Understanding local challenges will serve to better guide programs in implementing facilitators that will address their specific needs for improved outcomes.


Asunto(s)
Servicios de Salud del Niño , Disparidades en Atención de Salud , Pérdida Auditiva , Servicios de Salud del Niño/estadística & datos numéricos , Pruebas Auditivas/estadística & datos numéricos , Pérdida Auditiva/congénito , Pérdida Auditiva/diagnóstico , Disparidades en Atención de Salud/estadística & datos numéricos , Estudios Retrospectivos , Factores de Riesgo , Humanos , Masculino , Femenino , Recién Nacido
2.
Neurobiol Lang (Camb) ; 4(1): 1-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875176

RESUMEN

Children with developmental language disorder (DLD) show relative weaknesses on rhythm tasks beyond their characteristic linguistic impairments. The current study compares preferred tempo and the width of an entrainment region for 5- to 7-year-old typically developing (TD) children and children with DLD and considers the associations with rhythm aptitude and expressive grammar skills in the two populations. Preferred tempo was measured with a spontaneous motor tempo task (tapping tempo at a comfortable speed), and the width (range) of an entrainment region was measured by the difference between the upper (slow) and lower (fast) limits of tapping a rhythm normalized by an individual's spontaneous motor tempo. Data from N = 16 children with DLD and N = 114 TD children showed that whereas entrainment-region width did not differ across the two groups, slowest motor tempo, the determinant of the upper (slow) limit of the entrainment region, was at a faster tempo in children with DLD vs. TD. In other words, the DLD group could not pace their slow tapping as slowly as the TD group. Entrainment-region width was positively associated with rhythm aptitude and receptive grammar even after taking into account potential confounding factors, whereas expressive grammar did not show an association with any of the tapping measures. Preferred tempo was not associated with any study variables after including covariates in the analyses. These results motivate future neuroscientific studies of low-frequency neural oscillatory mechanisms as the potential neural correlates of entrainment-region width and their associations with musical rhythm and spoken language processing in children with typical and atypical language development.

3.
Sci Rep ; 13(1): 2201, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750727

RESUMEN

A growing number of studies have shown a connection between rhythmic processing and language skill. It has been proposed that domain-general rhythm abilities might help children to tap into the rhythm of speech (prosody), cueing them to prosodic markers of grammatical (syntactic) information during language acquisition, thus underlying the observed correlations between rhythm and language. Working memory processes common to task demands for musical rhythm discrimination and spoken language paradigms are another possible source of individual variance observed in musical rhythm and language abilities. To investigate the nature of the relationship between musical rhythm and expressive grammar skills, we adopted an individual differences approach in N = 132 elementary school-aged children ages 5-7, with typical language development, and investigated prosodic perception and working memory skills as possible mediators. Aligning with the literature, musical rhythm was correlated with expressive grammar performance (r = 0.41, p < 0.001). Moreover, musical rhythm predicted mastery of complex syntax items (r = 0.26, p = 0.003), suggesting a privileged role of hierarchical processing shared between musical rhythm processing and children's acquisition of complex syntactic structures. These relationships between rhythm and grammatical skills were not mediated by prosodic perception, working memory, or non-verbal IQ; instead, we uncovered a robust direct effect of musical rhythm perception on grammatical task performance. Future work should focus on possible biological endophenotypes and genetic influences underlying this relationship.


Asunto(s)
Música , Humanos , Niño , Preescolar , Individualidad , Lenguaje , Lingüística , Memoria a Corto Plazo
4.
Ear Hear ; 42(5): 1358-1372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33795616

RESUMEN

OBJECTIVES: This study aimed to investigate effects of aging and duration of deafness on sensitivity of the auditory nerve (AN) to amplitude modulation (AM) cues delivered using trains of biphasic pulses in adult cochlear implant (CI) users. DESIGN: There were 21 postlingually deaf adult CI users who participated in this study. All study participants used a Cochlear Nucleus device with a full electrode array insertion in the test ear. The stimulus was a 200-ms pulse train with a pulse rate of 2000 pulses per second. This carrier pulse train was sinusodially AM at four modulation rates (20, 40, 100, 200 Hz). The peak amplitude of the modulated pulse train was the maximum comfortable level (i.e., C level) measured for the carrier pulse train. The electrically evoked compound action potential (eCAP) to each of the 20 pulses selected over the last two AM cycles were measured. In addition, eCAPs to single pulses were measured with the probe levels corresponding to the levels of 20 selected pulses from each AM pulse train. There were seven electrodes across the array evaluated in 16 subjects (i.e., electrodes 3 or 4, 6, 9, 12, 15, 18, and 21). For the remaining five subjects, 4 to 5 electrodes were tested due to impedance issues or time constraints. The modulated response amplitude ratio (MRAR) was calculated as the ratio of the difference in the maximum and the minimum eCAP amplitude measured for the AM pulse train to that measured for the single pulse, and served as the dependent variable. Age at time of testing and duration of deafness measured/defined using three criteria served as the independent variables. Linear Mixed Models were used to assess the effects of age at testing and duration of deafness on the MRAR. RESULTS: Age at testing had a strong, negative effect on the MRAR. For each subject, the duration of deafness varied substantially depending on how it was defined/measured, which demonstrates the difficulty of accurately measuring the duration of deafness in adult CI users. There was no clear or reliable trend showing a relationship between the MRAR measured at any AM rate and duration of deafness defined by any criteria. After controlling for the effect of age at testing, MRARs measured at 200 Hz and basal electrode locations (i.e., electrodes 3 and 6) were larger than those measured at any other AM rate and apical electrode locations (i.e., electrodes 18 and 21). CONCLUSIONS: The AN sensitivity to AM cues implemented in the pulse-train stimulation significantly declines with advanced age. Accurately measuring duration of deafness in adult CI users is challenging, which, at least partially, might have accounted for the inconclusive findings in the relationship between the duration of deafness and the AN sensitivity to AM cues in this study.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Adulto , Nervio Coclear , Señales (Psicología) , Estimulación Eléctrica , Potenciales Evocados Auditivos , Humanos
5.
Ear Hear ; 42(1): 180-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32826505

RESUMEN

OBJECTIVES: This study aimed to create an objective predictive model for assessing the functional status of the cochlear nerve (CN) in individual cochlear implant (CI) users. DESIGN: Study participants included 23 children with cochlear nerve deficiency (CND), 29 children with normal-sized CNs (NSCNs), and 20 adults with various etiologies of hearing loss. Eight participants were bilateral CI users and were tested in both ears. As a result, a total of 80 ears were tested in this study. All participants used Cochlear Nucleus CIs in their test ears. For each participant, the CN refractory recovery function and input/output (I/O) function were measured using electrophysiological measures of the electrically evoked compound action potential (eCAP) at three electrode sites across the electrode array. Refractory recovery time constants were estimated using statistical modeling with an exponential decay function. Slopes of I/O functions were estimated using linear regression. The eCAP parameters used as input variables in the predictive model were absolute refractory recovery time estimated based on the refractory recovery function, eCAP threshold, slope of the eCAP I/O function, and negative-peak (i.e., N1) latency. The output variable of the predictive model was CN index, an indicator for the functional status of the CN. Predictive models were created by performing linear regression, support vector machine regression, and logistic regression with eCAP parameters from children with CND and the children with NSCNs. One-way analysis of variance with post hoc analysis with Tukey's honest significant difference criterion was used to compare study variables among study groups. RESULTS: All three machine learning algorithms created two distinct distributions of CN indices for children with CND and children with NSCNs. Variations in CN index when calculated using different machine learning techniques were observed for adult CI users. Regardless of these variations, CN indices calculated using all three techniques in adult CI users were significantly correlated with Consonant-Nucleus-Consonant word and AzBio sentence scores measured in quiet. The five oldest CI users had smaller CN indices than the five youngest CI users in this study. CONCLUSIONS: The functional status of the CN for individual CI users was estimated by our newly developed analytical models. Model predictions of CN function for individual adult CI users were positively and significantly correlated with speech perception performance. The models presented in this study may be useful for understanding and/or predicting CI outcomes for individual patients.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Niño , Nervio Coclear , Potenciales Evocados Auditivos , Estado Funcional , Humanos , Aprendizaje Automático
6.
Ear Hear ; 41(6): 1606-1618, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33136636

RESUMEN

OBJECTIVES: The aim of this study is to (1) investigate the effects of increasing the pulse phase duration (PPD) on the neural response of the electrically stimulated cochlear nerve (CN) in children with CN deficiency (CND) and (2) compare the results from the CND population to those measured in children with normal-sized CNs. DESIGN: Study participants included 30 children with CND and 30 children with normal-sized CNs. All participants used a Cochlear Nucleus device in the test ear. For each subject, electrically evoked compound action potential (eCAP) input/output (I/O) functions evoked by single biphasic pulses with different PPDs were recorded at three electrode locations across the electrode array. PPD durations tested in this study included 50, 62, 75, and 88 µsec/phase. For each electrode tested for each study participant, the amount of electrical charge corresponding to the maximum comfortable level measured for the 88 µsec PPD was used as the upper limit of stimulation. The eCAP amplitude measured at the highest electrical charge level, the eCAP threshold (i.e., the lowest level that evoked an eCAP), and the slope of the eCAP I/O function were measured. Generalized linear mixed effect models with study group, electrode location, and PPD as the fixed effects and subject as the random effect were used to compare these dependent variables measured at different electrode locations and PPDs between children with CND and children with normal-sized CNs. RESULTS: Children with CND had smaller eCAP amplitudes, higher eCAP thresholds, and smaller slopes of the eCAP I/O function than children with normal-sized CNs. Children with CND who had fewer electrodes with a measurable eCAP showed smaller eCAP amplitudes and flatter eCAP I/O functions than children with CND who had more electrodes with eCAPs. Increasing the PPD did not show a statistically significant effect on any of these three eCAP parameters in the two subject groups tested in this study. CONCLUSIONS: For the same amount of electrical charge, increasing the PPD from 50 to 88 µsec for a biphasic pulse with a 7 µsec interphase gap did not significantly affect CN responsiveness to electrical stimulation in human cochlear implant users. Further studies with different electrical pulse configurations are warranted to determine whether evaluating the eCAP sensitivity to changes in the PPD can be used as a testing paradigm to estimate neural survival of the CN for individual cochlear implant users.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Potenciales de Acción , Niño , Nervio Coclear , Estimulación Eléctrica , Potenciales Evocados Auditivos , Humanos
7.
J Exp Child Psychol ; 173: 371-379, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29778278

RESUMEN

Musical rhythm and the grammatical structure of language share a surprising number of characteristics that may be intrinsically related in child development. The current study aimed to understand the potential influence of musical rhythmic priming on subsequent spoken grammar task performance in children with typical development who were native speakers of English. Participants (ages 5-8 years) listened to rhythmically regular and irregular musical sequences (within-participants design) followed by blocks of grammatically correct and incorrect sentences upon which they were asked to perform a grammaticality judgment task. Rhythmically regular musical sequences improved performance in grammaticality judgment compared with rhythmically irregular musical sequences. No such effect of rhythmic priming was found in two nonlinguistic control tasks, suggesting a neural overlap between rhythm processing and mechanisms recruited during grammar processing. These findings build on previous research investigating the effect of rhythmic priming by extending the paradigm to a different language, testing a younger population, and employing nonlanguage control tasks. These findings of an immediate influence of rhythm on grammar states (temporarily augmented grammaticality judgment performance) also converge with previous findings of associations between rhythm and grammar traits (stable generalized grammar abilities) in children. Taken together, the results of this study provide additional evidence for shared neural processing for language and music and warrant future investigations of potentially beneficial effects of innovative musical material on language processing.


Asunto(s)
Juicio , Lenguaje , Música , Periodicidad , Percepción Auditiva , Niño , Preescolar , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...