Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Arch Razi Inst ; 78(6): 1698-1708, 2023 Dec.
Article En | MEDLINE | ID: mdl-38828181

Thyroid and gonadotropin hormones play an essential role in the regulation of regulating various physiological functions. The effects of melatonin and zinc (Zn) on these hormones have already been investigated. The aim of the present study was to investigate the effect of melatonin with and without zinc on the levels of gonadotropin hormones and thyroid hormones (triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH)) in female rats. In general, 35 sexually mature female rats were randomly divided into five treatment groups, with each group comprising 7 rats, in a completely randomized design (CRD) during the research. The rats were treated daily with Zn and melatonin via gavage as follows T1 (control 1, basal diet), T2 (control 2, treatment with normal saline) and the other experimental groups, including T3, T4 and T5, were treated with Zn (40 ppm), melatonin (5 mg/kg) or a combination of Zn and melatonin at the same dose. The administration of the drugs was continued for 20 days (daily) . Plasma samples were then taken for the determination of LH, FFH, LH/FSH, estrogen, progesterone, T3, T4 and TSH levels. The results showed no significant differences in FSH and LH levels between treatments. Estrogen, progesterone and TSH levels were higher in the rats receiving 5 mg melatonin per day than in the other groups, but not statistically significant (P>0.05). However, T3 levels decreased significantly in the group receiving 40 mg/kg Zn compared to the other experiments. (P<0.05). The results showed no significant difference between the treatments in terms of T4 levels (P>0.05). In conclusion, no remarkable changes in other variables were observed in female rats receiving melatonin, Zn or a combination of melatonin and Zn, with the exception of T3.


Melatonin , Rats, Wistar , Thyroid Hormones , Zinc , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Female , Rats , Zinc/administration & dosage , Zinc/pharmacology , Thyroid Hormones/blood , Gonadotropins/blood , Triiodothyronine/blood , Thyroxine/blood , Random Allocation , Thyrotropin/blood
2.
Arch Razi Inst ; 77(2): 681-688, 2022 Apr.
Article En | MEDLINE | ID: mdl-36284938

This study aimed to assess the possible feeding behavior alterations by central interactions of cholecystokinin (CCK) and glutamatergic systems in neonatal chickens. In experiment 1, chickens received intracerebroventricular (ICV) administration of saline and CCK (CCK4; 0.25, 0.5, and 1 nmol). In experiment 2, birds were ICV injected with saline, CCK8s (0.25, 0.5, and 1 nmol). In experiment 3, chickens received the ICV injection of saline, CCK8s (1 nmol), MK-801 (15 nmol), and co-injection of the CCk8s+MK-801. Experiments 4-7 were performed similar to experiment 3, except for chickens that were injected with CNQX (390 nmol), AIDA (2 nmol), LY341495 (150 nmol), and UBP1112 (2 nmol) instead of MK-801. Subsequently, the total amount of the consumed food was determined. According to the results, the ICV administration of CCK4 (0.25, 0.5, and 1 nmol) could not affect the food intake in chickens (P>0.05). The ICV injection of the CCK8s (0.25, 0.5, and 1 nmol) led to a dose-dependent hypophagia (P<0.05). Moreover, hypophagia induced by CCK8s decreased by the co-injection of the CCK8s+MK-801 (P<0.05). These results showed that the hypophagic effects of the CCK on food intake can be mediated by NMDA glutamate receptors in layer-type chickens.


Chickens , Eating , Animals , Dizocilpine Maleate/pharmacology , Cholecystokinin/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , N-Methylaspartate/pharmacology , Animals, Newborn , Feeding Behavior , Receptors, Glutamate
3.
Arch Razi Inst ; 77(1): 141-149, 2022 02.
Article En | MEDLINE | ID: mdl-35891757

The current study was conducted to investigate the interaction between the central adrenergic and histaminergic systems and the broiler chick's feed intake. In the first experiment, the intracerebroventricular (ICV) injection of solutions was conducted which included 10 nmol of prazosin (an α1-receptor antagonist), 300 nmol of histamine, co-injection of prazosin and histamine. Experiments two to five were conducted similarly the same as the first experiment, in which chickens were ICV injected with 13 nmol of yohimbine (an α2-receptor antagonist), 24 nmol of metoprolol (a ß1 adrenergic receptor antagonist), 5 nmol of ICI 118,551 (a ß2 adrenergic receptor antagonist), and 20 nmol of SR 59230R (a ß3 adrenergic receptor antagonist). The injected solutions in the sixth experiment included 300 nmol of noradrenaline, 250 nmol of α-FMH (an alpha fluoromethyl histidine), noradrenaline, and α-FMH. Seventh to ninth experiments were similar to the sixth experiment, except that the chickens were ICV injected with 300 nmol of chlorpheniramine (a histamine H1 receptors antagonist), 82 nmol of famotidine (a histamine H2 receptors antagonist), and 300 nmol of thioperamide (a histamine H3 receptors antagonist), rather than α-FMH. Afterward, the cumulative food intake was measured 120 min after injection. Based on the obtained results, both histamine ICV injection and noradrenaline injection reduced food intake (P<0.05). Moreover, co-injection of histamine and ICI 118,551 (P<0.05), and co-injection of noradrenaline and Chlorpheniramine reduced food intake (P<0.05). In addition, noradrenaline and Thioperamide co-injection improved hypophagic effect of noradrenaline in neonatal chicken (P<0.05). These findings suggested the effect of interconnection between adrenergic and histaminergic systems, which may be mediated by H1 and H3 histaminergic and ß2 adrenergic receptors, on the regulation of food intake in the neonatal broiler chicken.


Appetite , Chickens , Adrenergic Agents/pharmacology , Adrenergic Antagonists/pharmacology , Animals , Animals, Newborn , Chlorpheniramine/pharmacology , Feeding Behavior/physiology , Histamine/pharmacology , Norepinephrine/pharmacology , Prazosin/pharmacology , Receptors, Adrenergic , Receptors, Histamine
4.
Arch Razi Inst ; 76(3): 537-551, 2021.
Article En | MEDLINE | ID: mdl-34824747

This study purposed to discover the connection between the central glutamatergic and histaminergic systems on feeding behavior in layer chickens. In the first experiment, chicks obtained intracerebroventricular (ICV) injections of saline (control solution), α-FMH (250 nmol), glutamate (300 nmol), and α-FMH + glutamate. Experiments 2-6 were comparable to the first experiment, apart from the birds being injected with chlorpheniramine (histamine H1 receptor antagonist, 300 nmol), famotidine (histamine H2 receptor antagonist, 82 nmol), and thioperamide (histamine H3 receptor antagonist, 300 nmol) instead of α-FMH. In Experiment five, experimental groups were divided into (A) control solution, (B) MK-801 (N-methyl-D-aspartate receptor antagonist, 15 nmol), (C) histamine (300 nmol) and (D) MK-801 + histamine. Experiments 6-10 and Experiment five were similar apart from the ICV injections of CNQX (AMPA receptor antagonist, 360 nm), UBP-302 (Kainate receptor antagonist, 390 nm), AIDA (mGluR1 antagonist, 2 nmol), LY341495 (mGluR2 antagonist, 150 nmol), and UBP1112 (mGluR3 antagonist, 2 nmol) given instead of MK-801. Afterward, cumulative food intake was recorded at30, 60, and 120 minutes after the injection process. According to the results, ICV injection of glutamate considerably reduced food intake (p<0.05). Co-injection of α-FMH + glutamate and/or chlorpheniramine + glutamate reduced the hypophagic influence of glutamate (p<0.05), whereas thioperamide + glutamate augmented glutamate-induced hypophagia in neonatal chicks (p<0.05). Co-injection of MK-801 + histamine or UBP-302 + histamine reduced the hypophagic influence of the histamine (p<0.05), whereas LY341495 + histamine augmented the hypophagic influence of the histamine (p<0.05). Given the results, it is suggested that the effect of the connection between these systems on the process of food intake regulation is mediated by H1 and H3 histamines as well as NMDA, Kainate, and mGluR2 glutamate receptors in neonatal layer chickens.


Appetite Regulation , Chickens , Animals , Animals, Newborn , Eating , Feeding Behavior
5.
Arch Razi Inst ; 76(6): 1735-1744, 2021 12.
Article En | MEDLINE | ID: mdl-35546995

The present study aimed to assess the probable impact of the central histaminergic and melanocortin systems on leptin-induced hypophagia in neonatal layer chickens. In experiment 1, the chickens received intracerebroventricular (ICV) injections of the control solution, 250 nmol of α-FMH, 10 µg of leptin, and α-FMH+leptin. Experimental groups 2-8 were injected the same as experiment 1. Nonetheless, the chickens in experiments 2-8 received ICV injections of 300 nmol of chlorpheniramine (H1 receptor antagonist), 82 nmol of famotidine (H2 receptor antagonist), 300 nmol of thioperamide (H3 receptor antagonist), 0.5 nmol of SHU9119 (M3/M4 receptors antagonist), 0.5 nmol of MCL0020 (M4 receptor antagonist), 30 µg of astressin-B (CRF1/ CRF2 receptors antagonist), and 30 µg of astressin2-B (CRF2 receptor antagonist), instead of α-FMH, respectively. Food was provided for the birds immediately following the injection, and 30, 60, and 120 min after the injection, cumulative food intake (g) was measured. The findings pointed out that the ICV injection of leptin diminished food intake in neonatal chickens (P<0.05). The co-administration of M3/M4 receptor antagonist+leptin significantly decreased the hypophagic effect of leptin (P<0.05). A significant decrease was also detected in the hypophagic effect of leptin following the co-administration of the M4 receptor antagonist and leptin (P<0.05). Moreover, the co-injection of the antagonists of CRF1/CRF2 receptors and leptin significantly mitigated the hypophagic effect of leptin (P<0.05). The co-injection of CRF2 receptor antagonist and leptin led to a decrease in the hypophagic effect of leptin. As evidenced by the results of the current study the hypophagic effect of leptin is mediated by the receptors of H1, H3, M3/M4, and CRF1/CRF2 in neonatal layer chicken.


Chickens , Melanocortins , Animals , Animals, Newborn , Eating , Leptin/pharmacology , Melanocortins/pharmacology
...