Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844770

RESUMEN

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Microburbujas , Receptor de Muerte Celular Programada 1 , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Doxorrubicina/análogos & derivados , Animales , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/inmunología , Glioma/patología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Femenino , Sistemas de Liberación de Medicamentos , Ondas Ultrasónicas , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Glioblastoma/patología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones Endogámicos C57BL , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Polietilenglicoles
2.
Cells ; 12(21)2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37947615

RESUMEN

Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Agua Potable , Síndromes de Neurotoxicidad , Humanos , Arsénico/toxicidad , Intoxicación por Arsénico/complicaciones , Encéfalo , Cognición
3.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36986469

RESUMEN

Kynureninase (KYNU) is a kynurenine pathway (KP) enzyme that produces metabolites with immunomodulatory properties. In recent years, overactivation of KP has been associated with poor prognosis of several types of cancer, in particular by promoting the invasion, metastasis, and chemoresistance of cancer cells. However, the role of KYNU in gliomas remains to be explored. In this study, we used the available data from TCGA, CGGA and GTEx projects to analyze KYNU expression in gliomas and healthy tissue, as well as the potential contribution of KYNU in the tumor immune infiltrate. In addition, immune-related genes were screened with KYNU expression. KYNU expression correlated with the increased malignancy of astrocytic tumors. Survival analysis in primary astrocytomas showed that KYNU expression correlated with poor prognosis. Additionally, KYNU expression correlated positively with several genes related to an immunosuppressive microenvironment and with the characteristic immune tumor infiltrate. These findings indicate that KYNU could be a potential therapeutic target for modulating the tumor microenvironment and enhancing an effective antitumor immune response.

4.
Res Sq ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711497

RESUMEN

Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation. We also identified TGFß-1/TGFß receptor-2 interaction as a crucial modulator of B-cell suppression. Treatment of glioblastoma patients with pembrolizumab induced expression of B-cell checkpoint molecules and TGFß-receptor-2. Abrogation of TGFß using different conditional knockouts expanded germinal-center-like intratumoral B-cells, enhancing immune-checkpoint-blockade efficacy. Finally, blocking αVß8 integrin (which controls the release of active TGFß) and PD-1 significantly increased B-cell-dependent animal survival and immunological memory. Our study highlights the importance of intratumoral B-cell immunity and a remodeled approach to boost the effects of immunotherapy against brain tumors.

5.
Front Immunol ; 14: 1331287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38299146

RESUMEN

Introduction: Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods: Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results: Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion: The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.


Asunto(s)
Glioblastoma , Humanos , Receptores CXCR6/metabolismo , Linfocitos T/metabolismo , Quimiocina CXCL16/metabolismo , Microglía/metabolismo , Microambiente Tumoral
6.
Front Immunol ; 14: 1295218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38268923

RESUMEN

Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-µm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.


Asunto(s)
Glioblastoma , Humanos , Granzimas , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Células Presentadoras de Antígenos , Proliferación Celular , Microambiente Tumoral
7.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497079

RESUMEN

The activation of the maternal immune system by a prenatal infection is considered a risk factor for developing psychiatric disorders in the offspring. Toxoplasma gondii is one of the pathogenic infections associated with schizophrenia. Recent studies have shown an association between high levels of IgG anti-T. gondii from mothers and their neonates, with a higher risk of developing schizophrenia. The absence of the parasite and the levels of IgGs found in the early stages of life suggest a transplacental transfer of the anti-T. gondii IgG antibodies, which could bind fetal brain structures by molecular mimicry and induce alterations in neurodevelopment. This study aimed to determine the maternal pathogenic antibodies formation that led to behavioral impairment on the progeny of rats immunized with T. gondii. Female rats were immunized prior to gestation with T. gondii lysate (3 times/once per week). The anti-T. gondii IgG levels were determined in the serum of pregestational exposed females' previous mating. After this, locomotor activity, cognitive and social tests were performed. Cortical neurotransmitter levels for dopamine and glutamate were evaluated at 60 PND in the progeny of rats immunized before gestation (Pregestational group). The maternal pathogenic antibodies were evidenced by their binding to fetal brain mimotopes in the Pregestational group and the reactivity of the serum containing anti-T. gondii IgG was tested in control fetal brains (non-immunized). These results showed that the Pregestational group presented impairment in short and long-term memory, hypoactivity and alteration in social behavior, which was also associated with a decrease in cortical glutamate and dopamine levels. We also found the IgG antibodies bound to brain mimotopes in fetuses from females immunized with T. gondii, as well as observing a strong reactivity of the serum females immunized for fetal brain structures of fetuses from unimmunized mothers. Our results suggest that the exposure to T. gondii before gestation produced maternal pathogenic antibodies that can recognize fetal brain mimotopes and lead to neurochemical and behavioral alterations in the offspring.


Asunto(s)
Dopamina , Toxoplasma , Embarazo , Animales , Femenino , Ratas , Ácido Glutámico , Inmunoglobulina G , Encéfalo
8.
Metabolites ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355137

RESUMEN

Indoleamine dioxygenase (IDO), a rate limiting enzyme of the tryptophan catabolism through the kynurenine pathway (KP), has been related with a lower survival and a poor patient prognosis on several solid tumors, including gliomas. However, the use of IDO inhibitors as a therapeutic strategy for tumor treatment remains controversial in clinical trials and the role of other KP enzymes on tumor progression has remained poorly understood so far. Recently, different studies on different types of cancer have pointed out the importance of KP enzymes downstream IDO. Because of this, we conducted a bioinformatic analysis of the expression of different KP enzymes and their correlation with the gene expression of molecules related to the hallmarks of cancer in transcriptomic datasets from patients with different types of brain tumors including low grade gliomas, glioblastoma multiforme, neuroblastoma, and paraganglioma and pheochromocytoma. We found that KP enzymes that drive to NAD+ synthesis are overexpressed on different brain tumors compared to brain cortex data. Moreover, these enzymes presented positive correlations with the expression of genes related to immune response modulation, angiogenesis, Signal Transducer and Activator of Transcription (STAT) signaling, and Rho GTPase expression. These correlations suggest the relevance of the expression of the KP enzymes in brain tumor pathogenesis.

9.
Antioxidants (Basel) ; 11(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35204197

RESUMEN

Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions.

10.
J Immunol Res ; 2021: 3412906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557553

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoterapia , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Ensayos Clínicos como Asunto , Terapia Combinada , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Glioblastoma/etiología , Glioblastoma/metabolismo , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Modelos Animales , Terapia Molecular Dirigida , Viroterapia Oncolítica/métodos , Resultado del Tratamiento
11.
Cells ; 10(8)2021 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-34440798

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Quinurenina 3-Monooxigenasa/genética , Adulto , Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Línea Celular Tumoral , Femenino , Glioma/enzimología , Glioma/genética , Humanos , Estimación de Kaplan-Meier , Quinurenina/análogos & derivados , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
12.
Nutrients ; 13(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200665

RESUMEN

Beer is a fermented beverage widely consumed worldwide with high nutritional and biological value due to its bioactive components. It has been described that both alcoholic and non-alcoholic beer have several nutrients derived from their ingredients including vitamins, minerals, proteins, carbohydrates, and antioxidants that make beer a potential functional supplement. Some of these compounds possess redox, anti-inflammatory and anticarcinogenic properties making the benefits of moderate beer consumption an attractive way to improve human health. Specifically, the hop cones used for beer brewing provide essential oils, bitter acids and flavonoids that are potent antioxidants and immune response modulators. This review focuses on the redox and anti-inflammatory properties of hop derivatives and summarizes the current knowledge of their neuroprotective effects.


Asunto(s)
Antiinflamatorios/farmacología , Cerveza/análisis , Humulus/química , Neuroprotección/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Oxidación-Reducción
13.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35052535

RESUMEN

L-kynurenine (L-KYN) is an endogenous metabolite, that has been used as a neuroprotective strategy in experimental models. The protective effects of L-KYN have been attributed mainly to kynurenic acid (KYNA). However, considering that L-KYN is prone to oxidation, this redox property may play a substantial role in its protective effects. The aim of this work was to characterize the potential impact of the redox properties of L-KYN, in both synthetic and biological systems. First, we determined whether L-KYN scavenges reactive oxygen species (ROS) and prevents DNA and protein oxidative degradation in synthetic systems. The effect of L-KYN and KYNA (0.1-100 µM) on redox markers (ROS production, lipoperoxidation and cellular function) was compared in rat brain homogenates when exposed to FeSO4 (10 µM). Then, the effect of L-KYN administration (75 mg/kg/day for 5 days) on the GSH content and the enzymatic activity of glutathione reductase (GR) and glutathione peroxidase (GPx) was determined in rat brain tissue. Finally, brain homogenates from rats pretreated with L-KYN were exposed to pro-oxidants and oxidative markers were evaluated. The results show that L-KYN is an efficient scavenger of ●OH and ONOO-, but not O2●- or H2O2 and that it prevents DNA and protein oxidative degradation in synthetic systems. L-KYN diminishes the oxidative effect induced by FeSO4 on brain homogenates at lower concentrations (1 µM) when compared to KYNA (100 µM). Furthermore, the sub-chronic administration of L-KYN increased the GSH content and the activity of both GR and GPx, and also prevented the oxidative damage induced by the ex vivo exposure to pro-oxidants. Altogether, these findings strongly suggest that L-KYN can be considered as a potential endogenous antioxidant.

14.
Sci Rep ; 10(1): 3184, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081969

RESUMEN

The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.


Asunto(s)
Disfunción Cognitiva/metabolismo , Quinurenina/metabolismo , Lactancia , Plomo/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Exposición a Riesgos Ambientales , Femenino , Lactancia/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Oxidación-Reducción
15.
Toxicol Rep ; 7: 101-108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31921600

RESUMEN

Infective endocarditis (IE) is an illness where the heart is invaded by bacteria, like Streptococcal and Staphylococcal species that contain lipoteichoic acid (LTA) related to an essential role in this disease. This study is the first in evaluating antioxidant enzyme levels in embryonic cardiomyocyte cell line (H9c2) induced by LTA from Streptococcus sanguinis. LTA increased reactive oxygen species (ROS) and reduced the levels of the antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD)-1 and catalase (CAT) but did not affect glutathione content. At the highest LTA concentration (15 µg/ml), SOD-1 and CAT levels did not change, and this effect was related to the induction of mRNA levels of Nrf2 induced by LTA. These results suggest that low antioxidant enzyme levels and ROS production could be related to IE.

16.
Redox Biol ; 8: 341-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26966893

RESUMEN

It was explored the cytoprotective and antioxidant effect of MLN4924, a specific inhibitor of Nedd8-activating enzyme (NAE), against hydrogen peroxide (H2O2)-induced damage in cerebellar granule neurons (CGNs). Primary cultures of CGNs were exposed to H2O2 after preincubation with MLN4924. The compounds were removed, and CGNs were incubated in culture medium for 24h in order to determine cell viability by 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyl-tetrazolium bromide (MTT) and fluorescein diacetate (FDA) assays. It was demonstrated that MLN4924 remarkably attenuated H2O2-induced cell damage. Meanwhile reactive oxygen species (ROS) production was evaluated with the fluorescent probe dihydroethidium (DHE). Interestingly H2O2-induced ROS production was inhibited by pretreatment with MLN4924. MLN4924 treatment in CGNs resulted in nuclear factor E2-related factor 2 (Nrf2) protein accumulation. Intriguingly this effect was observed in the cytosolic and nuclear compartments of the CGNs. The cytoprotective effect of MLN4924 was associated with its ability to diminish ROS production induced by H2O2 and the accumulation of Nrf2 protein levels in the cytoplasm and nucleus of the CGNs.


Asunto(s)
Ciclopentanos/administración & dosificación , Citoprotección/genética , Factor 2 Relacionado con NF-E2/genética , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Enzimas Activadoras de Ubiquitina/genética
17.
Neurochem Int ; 61(2): 195-206, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22579569

RESUMEN

Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/µl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.


Asunto(s)
Antioxidantes/farmacología , Neostriado/enzimología , Neurotoxinas/toxicidad , Oxidantes/toxicidad , Compuestos de Selenio/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Western Blotting , Recuento de Células , Daño del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacología , Inmunohistoquímica , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neostriado/patología , Estrés Oxidativo/efectos de los fármacos , Ácido Quinolínico/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA