Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 15(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535336

RESUMEN

Flight dispersal is ecologically relevant for the survival of supratidal rockpool insects. Dispersal has important consequences for colonisation, gene flow, and evolutionary divergence. Here, we compared the flight dispersal capacity of two congeneric beetle species (Ochthebius quadricollis and Ochthebius lejolisii) that exclusively inhabit these temporary, fragmented, and extreme habitats. We estimated flight capacity and inferred dispersal in both species using different approaches: experimental flying assays, examination of wing morphology, and comparison of microsatellite markers between species. Our findings revealed that both species exhibited similar flight behaviour, with 60 to 80% of the individuals flying under water heating conditions. Notably, females of both species had larger body sizes and wing areas, along with lower wing loading, than males in O. quadricollis. These morphological traits are related to higher dispersal capacity and more energetically efficient flight, which could indicate a female-biassed dispersal pattern. The wing shapes of both species are characterised by relatively larger and narrower wings in relation to other species of the genus, suggesting high flight capacity at short distances. Molecular data revealed in both species low genetic divergences between neighbouring populations, non-significant differences between species, and no isolation by distance effect at the study scale (<100 km). These results point to passive dispersal assisted by wind.

2.
Insects ; 14(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999080

RESUMEN

Here we focus on designing, for the first time, microsatellite markers for evolutionary and ecological research on aquatic beetles from the genus Ochthebius (Coleoptera, Hydraenidae). Some of these non-model species, with high cryptic diversity, exclusively inhabit supratidal rockpools, extreme and highly dynamic habitats with important anthropogenic threats. We analysed 15 individuals of four species (O. lejolisii, O. subinteger, O. celatus, and O. quadricollis) across 10 localities from the Mediterranean coasts of Spain and Malta. Using next-generation sequencing technology, two libraries were constructed to interpret the species of the two subgenera present consistently (Ochthebius s. str., O. quadricollis; and Cobalius, the rest of the species). Finally, 20 markers (10 for each subgenus) were obtained and successfully tested by cross-validation in the four species under study. As a by-catch, we could retrieve the complete mitochondrial genomes of O. lejolisii, O. quadricollis, and O. subinteger. Interestingly, the mitochondrial genome of O. quadricollis exhibited high genetic variability compared to already published data. The novel SSR panels and mitochondrial genomes for Ochthebius will be valuable in future research on species identification, diversity, genetic structure, and population connectivity in highly dynamic and threatened habitats such as supratidal coastal rockpools.

3.
Front Sociol ; 8: 1183875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350852

RESUMEN

We don't know almost nothing about boredom. Even though the experience of boredom has been part of our daily life for centuries, we are far from being clear about what its suffering consists of, what its main causes and consequences are, or how we can satisfactorily escape it. This is one of the most repeated myths about boredom among some boredom scholars; one from which many others derive, causing unnecessary confusion about a phenomenon around which there exists, in fact, a whole corpus of scientific knowledge. Most of them are harmless, simple narratives from our popular culture; others, however, have the power to condition the way in which we perceive reality, to the point of becoming stigmatizing. Breaking with some of our most ingrained beliefs about boredom is not an easy task, although it is necessary to understand the true nature of this state. In my essay, I will try to disprove some of the contemporary myths that circulate about the experience of boredom. Starting with the first myth, I will explore the scope of other related myths such as those that say that the study of boredom is in its infancy, that boredom has not been given the attention it deserves, that the experience of boredom is born in modern societies, that boredom is an exclusively human condition, that boredom only happens in leisure time, that being bored is the same as doing nothing, that it is desirable to have moments of boredom, that boredom helps our brain to rest, that boredom makes us more creative, and that those who get bored is because they want to or, what is worse, that only fools get bored.

4.
Insects ; 12(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806018

RESUMEN

In the context of aridification in Mediterranean regions, desiccation resistance and physiological plasticity will be key traits for the persistence of aquatic insects exposed to increasing desiccation stress. Control of cuticular transpiration through changes in the quantity and composition of epicuticular hydrocarbons (CHCs) is one of the main mechanisms of desiccation resistance in insects, but it remains largely unexplored in aquatic ones. We studied acclimation responses to desiccation in adults of two endemic water beetles from distant lineages living in Mediterranean intermittent saline streams: Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae). Cuticular water loss and CHC composition were measured in specimens exposed to a prior non-lethal desiccation stress, allowed to recover and exposed to a subsequent desiccation treatment. E. jesusarribasi showed a beneficial acclimation response to desiccation: pre-desiccated individuals reduced cuticular water loss rate in a subsequent exposure by increasing the relative abundance of cuticular methyl-branched compounds, longer chain alkanes and branched alkanes. In contrast, N. baeticus lacked acclimation capacity for controlling water loss and therefore may have a lower physiological capacity to cope with increasing aridity. These results are relevant to understanding biochemical adaptations to drought stress in inland waters in an evolutionary and ecological context.

5.
J Insect Physiol ; 117: 103899, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31202853

RESUMEN

Salinity tolerance has enabled the colonization of inland saline waters and promoted species diversification in some lineages of aquatic insects. However, the mechanisms behind this tolerance, particularly the role of cuticle hydrocarbons (CHCs), are not well-known. We characterized the CHC profile of eight species of two water beetle genera (Nebrioporus, Adephaga: Dytiscidae and Enochrus, Polyphaga: Hydrophilidae), which span the fresh-hypersaline gradient, to: i) determine the interspecific variation of CHC composition in relation to species' salinity tolerance; ii) explore plastic adjustments in CHC profiles in response to salinity changes at the intraspecific level in saline-tolerant species. CHC profiles were highly species-specific, more complex and diverse in composition, and characterized by longer-chain-length compounds in the species with higher salinity tolerance within each genus. Higher salinity tolerance in the Enochrus species was also associated with an increase in the relative abundance of branched alkanes, and with a lower proportion of n-alkanes and unsaturated compounds. These CHC characteristics are related with improved waterproofing capacity and suggest that reducing cuticle permeability was one of the key mechanisms to adapt to saline waters. Similar CHC composition patterns were found at the intraspecific level between populations from lower and higher salinity sites within saline-tolerant species of each genus. These saline species also displayed an extraordinary ability to adjust CHC profiles to changing salinity conditions in the laboratory in a relatively short time, which reflects great plasticity and a high potential to deal with daily and seasonal environmental fluctuations in the highly dynamic saline habitats.


Asunto(s)
Escarabajos/metabolismo , Hidrocarburos/metabolismo , Tolerancia a la Sal , Agua/fisiología , Aclimatación , Animales , Presión Osmótica , Especificidad de la Especie
6.
Sci Total Environ ; 658: 912-921, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30583186

RESUMEN

Naturally stressed ecosystems hold a unique fraction of biodiversity. However, they have been largely ignored in biomonitoring and conservation programmes, such as the EU Water Framework Directive, while global change pressures are threatening their singular values. Here we present a framework to classify and evaluate the ecological quality of naturally stressed rivers along a water salinity gradient. We gathered datasets, including aquatic macroinvertebrate assemblages and environmental information, for 243 river locations across the western Mediterranean to: a) gauge the role of natural stressors (salinity) in driving aquatic community richness and composition; b) make river classifications by encompassing the wide range of environmental and biological variation exhibited by Mediterranean rivers; c) provide effective biomonitoring metrics of ecological quality for saline rivers. Our results showed that water salinity played a pivotal role in explaining the community richness and compositional changes in rivers, even when considering other key and commonly used descriptors, such as elevation, climate or lithology. Both environmental and biologically-based classifications included seven river types: three types of freshwater perennial rivers, one freshwater intermittent river type and three new saline river types. These new saline types were not included in previous classifications. Their validation by independent datasets showed that the saline and freshwater river types represented differentiable macroinvertebrate assemblages at family and species levels. Biomonitoring metrics based on the abundance of indicator taxa of each saline river type provided a much better assessment of the ecological quality of saline rivers than other widely used biological metrics and indices. Here we demonstrate that considering natural stressors, such as water salinity, is essential to design effective and accurate biomonitoring programmes for rivers and to preserve their unique biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente/métodos , Ríos/química , Salinidad , Animales , Italia , Marruecos , España
7.
Artículo en Inglés | MEDLINE | ID: mdl-30509911

RESUMEN

Abiotic stress shapes how communities assemble and support ecological functions. However, it remains unclear whether artificially increasing or decreasing stress levels would lead to communities assembling predictably along a single axis of variation or along multiple context-dependent trajectories of change. In response to stress intensity alterations, we hypothesize that a single trajectory of change occurs when trait-based assembly prevails, while multiple trajectories of change arise when dispersal-related processes modify colonization and trait-filtering dynamics. Here, we tested these hypotheses using aquatic macroinvertebrates from rivers exposed to gradients of natural salinity and artificially diluted or salinized ion contents. Our results showed that trait-filtering was important in driving community assembly in natural and diluted rivers, while dispersal-related processes seemed to play a relevant role in response to salinization. Salinized rivers showed novel communities with different trait composition, while natural and diluted communities exhibited similar taxonomic and trait compositional patterns along the conductivity gradient. Our findings suggest that the artificial modification of chemical stressors can result in different biological communities, depending on the direction of the change (salinization or dilution), with trait-filtering, and organism dispersal and colonization dynamics having differential roles in community assembly. The approach presented here provides both empirical and conceptual insights that can help in anticipating the ecological effects of global change, especially for those stressors with both natural and anthropogenic origins.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Asunto(s)
Biota , Invertebrados/fisiología , Ríos/química , Salinidad , Animales , Monitoreo del Ambiente , Estrés Fisiológico
8.
Artículo en Inglés | MEDLINE | ID: mdl-30509910

RESUMEN

Considering how organisms adapt to stress is essential if we are to anticipate biological responses to global change in ecosystems. Communities in stressful environments can potentially be assembled by specialists (i.e. species that only occur in a limited range of environmental conditions) and/or generalist species with wider environmental tolerances. We review the existing literature on the salinity tolerance of aquatic insects previously identified as saline specialists because they were exclusively found in saline habitats, and explore if these saline realized niche specialists are also specialists in their fundamental niches or on the contrary are fundamental niche generalist species confined to the highest salinities they can tolerate. The results suggest that species inhabiting saline waters are generalists in their fundamental niches, with a predominant pattern of high survival in freshwater-low salinity conditions, where their fitness tends to be similar or even higher than in saline waters. Additionally, their performance in freshwater tends to be similar to related strictly freshwater species, so no apparent trade-off of generalization is shown. These results are discussed in the framework of the ecological and evolutionary processes driving community assembly across the osmotic stress gradient, and their potential implications for predicting impacts from saline dilution and freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Asunto(s)
Biota , Insectos/fisiología , Rasgos de la Historia de Vida , Aguas Salinas , Tolerancia a la Sal , Animales , Agua Dulce
9.
Artículo en Inglés | MEDLINE | ID: mdl-30509913

RESUMEN

Under global change, the ion concentration of aquatic ecosystems is changing worldwide. Many freshwater ecosystems are being salinized by anthropogenic salt inputs, whereas many naturally saline ones are being diluted by agricultural drainages. This occurs concomitantly with changes in other stressors, which can result in additive, antagonistic or synergistic effects on organisms. We reviewed experimental studies that manipulated salinity and other abiotic stressors, on inland and transitional aquatic habitats, to (i) synthesize their main effects on organisms' performance, (ii) quantify the frequency of joint effect types across studies and (iii) determine the overall individual and joint effects and their variation among salinity-stressor pairs and organism groups using meta-analyses. Additive effects were slightly more frequent (54%) than non-additive ones (46%) across all the studies (n = 105 responses). However, antagonistic effects were dominant for the stressor pair salinity and toxicants (44%, n = 43), transitional habitats (48%, n = 31) and vertebrates (71%, n = 21). Meta-analyses showed detrimental additive joint effects of salinity and other stressors on organism performance and a greater individual impact of salinity than the other stressors. These results were consistent across stressor pairs and organism types. These findings suggest that strategies to mitigate multiple stressor impacts on aquatic ecosystems should prioritize restoring natural salinity concentrations.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Asunto(s)
Organismos Acuáticos/fisiología , Agua Dulce/química , Salinidad , Estrés Fisiológico , Animales , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Vertebrados/fisiología
10.
Mol Ecol ; 26(20): 5614-5628, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833872

RESUMEN

Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats.


Asunto(s)
Aclimatación , Evolución Biológica , Escarabajos/genética , Escarabajos/fisiología , Deshidratación , Tolerancia a la Sal , Animales , Ecosistema , Osmorregulación , Filogenia
11.
PeerJ ; 5: e3562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717597

RESUMEN

Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae) and Enochrus jesusarribasi (Hydrophilidae), using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae) compared with other aquatic Coleoptera (freshwater Dytiscidae). Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

12.
J Exp Biol ; 220(Pt 7): 1277-1286, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28104801

RESUMEN

Exposing organisms to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against the two stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of (i) salinity stress on the subsequent resistance to desiccation and (ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change.


Asunto(s)
Escarabajos/fisiología , Desecación , Tolerancia a la Sal , Adaptación Fisiológica , Animales , Hemolinfa/fisiología , Presión Osmótica , Salinidad , Estrés Fisiológico
13.
PeerJ ; 4: e2382, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27635346

RESUMEN

BACKGROUND: Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. METHODS: We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. RESULTS: Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens' initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. DISCUSSION: Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

14.
Ecology ; 96(9): 2458-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26594702

RESUMEN

The effect of stressors on biodiversity can vary in relation to the degree to which biological communities have adapted over evolutionary time. We compared the responses of functional features of stream insect communities along chronic stress gradients with contrasting time persistence. Water salinity and land use intensification were used as examples of natural (long-term persistent) and anthropogenic (short-term persistent) stressors, respectively. A new trait-based approach was applied to quantify functional diversity components and functional redundancy within the same multidimensional space, using metrics at the taxon and community levels. We found similar functional responses along natural and anthropogenic stress gradients. In both cases, the mean taxon functional richness and functional similarity between taxa increased with stress, whereas community functional richness and functional redundancy decreased. Despite the differences in evolutionary persistence, both chronic stressors act as strong nonrandom environmental filters, producing convergent functional responses. These results can improve our ability to predict functional effects of novel stressors at ecoloiical and evolutionary scales.


Asunto(s)
Ecosistema , Actividades Humanas , Insectos/fisiología , Modelos Biológicos , Ríos/química , Agricultura , Animales , Calentamiento Global , Humanos , Salinidad , Estrés Fisiológico , Agua/química
15.
PLoS One ; 10(4): e0124299, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25886355

RESUMEN

A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient.


Asunto(s)
Escarabajos/fisiología , Osmorregulación/fisiología , Salinidad , Tolerancia a la Sal/fisiología , Animales , Evolución Biológica , Ecosistema , Agua Dulce , Hemolinfa/química , Concentración Osmolar , España , Especificidad de la Especie
16.
Mol Ecol ; 23(2): 360-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24372998

RESUMEN

Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time-calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co-opted mechanism developed originally for drought resistance.


Asunto(s)
Evolución Biológica , Escarabajos/genética , Tolerancia a la Sal/genética , Animales , Núcleo Celular/genética , Escarabajos/fisiología , ADN Mitocondrial/genética , Ecosistema , Modelos Genéticos , Filogenia , Salinidad , Análisis de Secuencia de ADN
17.
PLoS One ; 8(3): e59757, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555771

RESUMEN

Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales.


Asunto(s)
Ecosistema , Heterópteros/fisiología , Especies Introducidas , Animales , Biodiversidad , Clima , Cambio Climático , Ecología , Ambiente , Europa (Continente) , Geografía , Nueva Caledonia , América del Norte , Sudáfrica
18.
Environ Manage ; 47(5): 992-1004, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21442295

RESUMEN

Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.


Asunto(s)
Monitoreo del Ambiente/métodos , Movimientos del Agua , Región Mediterránea , Ríos
19.
Saline Syst ; 2: 12, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17014701

RESUMEN

BACKGROUND: This study investigates the relationship between salinity and biotic communities (primary producers and macroinvertebrates) in Rambla Salada, a Mediterranean hypersaline stream in SE Spain. Since the 1980's, the mean salinity of the stream has fallen from about 100 g L(-1) to 35.5 g L(-1), due to intensive irrigated agriculture in the watershed. Furthermore, large dilutions occur occasionally when the water irrigation channel suffers cracks. RESULTS: Along the salinity gradient studied (3.5-76.4 g L(-1)) Cladophora glomerata and Ruppia maritima biomass decreased with increasing salinity, while the biomass of epipelic algae increased. Diptera and Coleoptera species dominated the community both in disturbed as in re-established conditions. Most macroinvertebrates species found in Rambla Salada stream are euryhaline species with a broad range of salinity tolerance. Eight of them were recorded in natural hypersaline conditions (approximately 100 g L(-1)) prior to important change in land use of the watershed: Ephydra flavipes, Stratyomis longicornis, Nebrioporus ceresyi, N. baeticus, Berosus hispanicus, Enochrus falcarius, Ochthebius cuprescens and Sigara selecta. However, other species recorded in the past, such as Ochthebius glaber, O. notabilis and Enochrus politus, were restricted to a hypersaline source or absent from Rambla Salada. The dilution of salinity to 3.5-6.8 g L(-1) allowed the colonization of species with low salininty tolerance, such as Melanopsis praemorsa, Anax sp., Simulidae, Ceratopogonidae and Tanypodinae. The abundance of Ephydra flavipes and Ochthebius corrugatus showed a positive significant response to salinity, while Anax sp., Simulidae, S. selecta, N. ceresyi, N. baeticus, and B. hispanicus showed significant negative correlations. The number of total macroinvertebrate taxa, Diptera and Coleoptera species, number of families, Margalef's index and Shannon's diversity index decreased with increasing salinity. However, the rest of community parameters, such as the abundance of individuals, evenness and Simpson's index, showed no significant response to changes in salinity. Classification and ordination analysis revealed major differences in macroinvertebrate community structure between hypersaline conditions (76.4 g L(-1)) and the rest of the communities observed at the lower salinity levels, and revealed that below approximately 75 g L(-1), dissimilarities in the communities were greater between the two habitats studied (runs and pools) than between salinity levels. CONCLUSION: Salinity was the first factor determining community composition and structure in Rambla Salada stream followed by the type of habitat.

20.
Environ Manage ; 33(3): 412-30, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15054671

RESUMEN

The main goal of the present study was to develop an ecological integrity index for littoral wetland management and conservation in semiarid Mediterranean areas that have been highly impacted by agriculture, including the selection of pressure and state indicators at landscape and wetlands scales that reflect the status, condition, and trends of wetlands ecosystems. We used a causality framework based on the relationship between pressure of anthropogenic activities and the ecological state of wetlands and their catchments, integrating environmental, biologic, economic, and social issues. From the application of 51 indicators in 7 littoral wetlands in the southeastern Iberian Peninsula, we selected 12 indicators (5 at catchment scale and 7 at wetland scale) to constitute the ecological integrity index proposed. The potential nitrogen export per area at catchment scale and the potential relative nitrogen export from the area surrounding the wetlands were the best pressure single predictors of state indicators with a causal relationship with environmental meaning. Wetlands in catchments with more agriculture had less ecological integrity than those in less impacted areas. A wide riparian zone in some wetlands acts as a buffer area, diminishing the effects of intensive agriculture. The index of ecological integrity developed here has a number of essential characteristics that make it a useful tool for ecosystem managers and decision-makers. The index can be used to (1) assess and control ecological integrity, (2) diagnose probable causes of ecological impairment, (3) establish criteria for protecting and restoring wetland ecosystems, and (4) integrate catchment management.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecología/normas , Ambiente , Agua de Mar , Indización y Redacción de Resúmenes , Agricultura/normas , Agricultura/estadística & datos numéricos , Biodiversidad , Clorofila/análisis , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecología/estadística & datos numéricos , Ecosistema , Monitoreo del Ambiente , Región Mediterránea , Nitrógeno/análisis , Dinámica Poblacional , Análisis de Componente Principal , Análisis de Regresión , Agua de Mar/análisis , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA