Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37455623

RESUMEN

Protein-protein association events are involved in many physiological and pathological processes. Cataract disease is a pathology that manifests protein aggregation of crystallins. ß-Crystallins are present in a high proportion in the eye lens. Therefore, the structural study of the dimerization properties of crystallins can shed light on the first stages of protein aggregation. In the present work, we examine the protein-protein association profiles of the human ßB2-crystallin by employing extensive coarse-grained molecular dynamics (CG-MD) and the Markov state analysis. Interestingly, our results clearly show important changes in the protein dimerization kinetics between wt-HßB2C and the deamidated systems. The two systems show dimeric conformations. However, the association and dissociation rates are very different. Our results show that the deamidated system can associate faster and dissociate slower than the wt- HßB2C. The deamidated system is in a slightly opened conformation with the Greek-key motifs well folded, suggesting that a complete unfolding of the protein is not required for aggregation. Our results describe the first stages of crystallin aggregation due to post-translational modifications.

2.
Biophys Chem ; 296: 106986, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905841

RESUMEN

Previous studies propose that genetic mutations and post-translational modifications in protein crystallins promote protein aggregation and are considered significant risk factors for cataract formation. The ßB2-crystallin (HßB2C) forms a high proportion of proteins in the human eye lens. Different congenital mutations and post-translational deamidations in ßB2-crystallin have been reported and linked to cataract formation. In this work, we employed extensive all-atom molecular dynamics simulations to evaluate the conformational stability of deamidated and mutated HßB2C. Our results show critical changes in the protein surface and its native contacts due to a modification in the conformational equilibrium of these proteins. The double deamidated (Q70E/Q162E) and single deamidated (Q70E) impact the well compact conformation of the HßB2C. These post-translational modifications allow the exposure of the protein hydrophobic interface, which lead to the exposure of electronegative residues. On the other hand, our mutational studies showed that the S143F mutation modifies the hydrogen-bond network of an antiparallel ß-sheet, unfolding the C-terminal domain. Interestingly, the chain termination mutation (Q155X) does not unfold the N-terminal domain. However, the resultant conformation is more compact and avoids the exposure of the hydrophobic interface. Our results provide valuable information about the first steps of HßB2C unfolding in the presence of deamidated amino acids that have been reported to appear during aging. The findings reported in this work are essential for the general knowledge of the initial steps in the cataract formation mechanism, which may be helpful for the further development of molecules with pharmacological potential against cataract disease.


Asunto(s)
Catarata , Cristalino , beta-Cristalinas , Humanos , Cristalino/química , Conformación Molecular , Mutación , beta-Cristalinas/metabolismo
3.
ACS Chem Neurosci ; 14(2): 261-269, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36562727

RESUMEN

γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-ß (Aß) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aß peptides and the development of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Catálisis , Simulación de Dinámica Molecular , Precursor de Proteína beta-Amiloide/metabolismo
4.
Phys Chem Chem Phys ; 24(32): 19223-19232, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920259

RESUMEN

γ-Secretase (GS) is a transmembrane (TM) enzyme that plays important roles in the processing of approximately 90 substrates. The amyloid precursor protein (APP) is one of these substrates, and the peptides derived from their processing are related with the development of Alzheimer's disease. However, the mechanistic process involved in the GS substrate processing and regulation remains elusive. In this work, we employed extensive atomistic molecular dynamics simulations, reduction dimensionality, and network analysis to understand the dynamic behavior of GS in its apo form and bound to transmembrane fragments of APP-C99, APP-C83, and Notch. An evaluation of the global conformation of the enzyme revealed that GS and GS-C83 systems display extended and compact conformations. However, systems with long extracellular N-terminal substrates, such as APP-C99 and Notch, preferred compact conformations. Interestingly, our network analysis revealed that the NCT-lobule (residues 223-248) plays a crucial role in the communication and the dynamics between the extracellular and TM components of the enzyme, impacting the catalytic site. In our GS-C99 simulated system, the interaction paths of the substrate processing region encompass the ε-site and ζ-site, leading to more imprecise positioning of the catalytic residue Asp385. Conversely, our GS-C83 simulated system shows more stability at the ε-site. Our observations shed light on the important mechanics of the fascinating GS architecture and may contribute to propose new GS modulators able to impact on the Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Dominio Catalítico , Humanos , Simulación de Dinámica Molecular
5.
J Biomol Struct Dyn ; 40(11): 5060-5068, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33397200

RESUMEN

Understanding, at the molecular level, the effect of AMPs on biological membranes is of crucial importance given the increasing number of multidrug-resistant bacteria. Being part of an ancient type of innate immunity system, AMPs have emerged as a potential solution for which bacteria have not developed resistance. Traditional antibiotics specifically act on biosynthetic pathways, while AMPs may directly destabilize the lipid membrane, but it is unclear how AMPs affect the membrane's stability. We performed multiscale molecular dynamics simulations to investigate the structural features leading to membrane pores formation on zwitterionic and anionic membranes by the antimicrobial peptide (AMP) Pandinin 2 (Pin2). Some experimental reports propose that Pin2 could form barrel-stave pores, while others suggest that it could form toroidal pores. Since there is no conclusive evidence of which type of pore is formed by Pin2 on bilayers, performing molecular dynamics simulations on these systems could shed some light on whether or not or what type of pore Pin2 forms on model membranes. Our results are focused on a detailed description of the pore formation by Pin2 in POPC and POPE:POPG membranes., which strongly suggest that Pin2 forms a toroidal pore and not a barrel-shaped pore; this type of pore also affects the membrane properties. In the process, a phospholipid remodeling in the POPE:POPG membrane takes place. Moreover, the pores formed by Pin2 indicate that they are selective for the chlorine ion. There are no previous ion selectivity reports for other AMPs with similar physicochemical properties, such as melittin and magainin.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Simulación de Dinámica Molecular , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Magaininas , Péptidos
6.
Phys Chem Chem Phys ; 22(46): 26753-26763, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33205789

RESUMEN

Adequate knowledge of protein conformations is crucial for understanding their function and their association properties with other proteins. The cataract disease is correlated with conformational changes in key proteins called crystallins. These changes are due to mutations or post-translational modifications that may lead to protein unfolding, and thus the formation of aggregate states. Human ßB2-crystallin (HßB2C) is found in high proportion in the eye lens, and its mutations are related to some cataracts. HßB2C also associates into dimers, tetramers, and other higher-order supramolecular complexes. However, it is the only protein of the ßγ-crystallin family that has been found in an extended conformation. Therefore, we hypothesize that the extended conformation is not energetically favourable and that HßB2C may adopt a closed (completely folded) conformation, similar to the other members of the ßγ-crystallin family. To corroborate this hypothesis, we performed extensive molecular dynamics simulations of HßB2C in its monomeric and dimeric conformations, using all-atom and coarse-grained scales. We employed Markov state model (MSM) analysis to characterize the conformational and kinetically relevant states in the folding process of monomeric HßB2C. The MSM analysis clearly shows that HßB2C adopts a completely folded structure, and this conformation is the most kinetically and energetically favourable one. In contrast, the extended conformations are kinetically unstable and energetically unfavourable. Our MSM analysis also reveals a key metastable state, which is particularly interesting because it is from this state that the folded state is reached. The folded state is stabilized by the formation of two salt bridges between the residue-pairs E74-R187 and R97-E166 and the two hydrophobic residue-pairs V59-L164 and V72-V151. Furthermore, free energy surface (FES) analysis revealed that the HßB2C dimer with both monomers in a closed conformation (face-en-face dimer) is energetically more stable than the domain-swapped dimer (crystallographic structure). The results presented in this report shed light on the molecular details of the folding mechanism of HßB2C in an aqueous environment and may contribute to interpreting different experimental findings. Finally, a detailed knowledge of HßB2C folding may be key to the rational design of potential molecules to treat cataract disease.


Asunto(s)
Pliegue de Proteína , Cadena B de beta-Cristalina/química , Humanos , Cadenas de Markov , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Termodinámica
7.
J Biomol Struct Dyn ; 38(10): 2928-2938, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31345123

RESUMEN

Most helical antimicrobial peptides (AMPs) are usually unfolded in aqueous solution; however they acquire their secondary structure in the presence of a hydrophobic environment such as lipid membranes. Being the biological membranes the main target of many AMPs it is necessary to understand their way of action. Pandinin 2 (Pin2) is an alpha-helical AMP isolated from the venom of the African scorpion Pandinus imperator which shows high antimicrobial activity against Gram-positive bacteria and it is less active against Gram-negative bacteria, nevertheless, it has strong hemolytic activity. Its chemically synthesized Pin2GVG analog has low hemolytic activity while keeping its antimicrobial activity. With the aim of exploring the partition and subsequent folding of these peptides, in this work we report the results of extensive molecular dynamics simulations of Pin2 and Pin2GVG peptides in the presence of 2 hydrophobic environments such as dodecyl-phosphocholine (DPC) micelle and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) membrane. Our results indicate that Pin2 folds in DPC with a 79% of alpha-helical content, which is in agreement with the experimental results, while in POPC it has 62.5% of alpha-helical content. On the other hand, Pin2GVG presents a higher percentage of alpha-helical structure in POPC and a smaller content in DPC when compared with Pin2. These results can help to better choose the starting structures in future molecular dynamics simulations of AMPs, because these peptides can adopt slightly different conformations depending on the hydrophobic environment.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinfecciosos , Venenos de Escorpión , Antibacterianos , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos , Simulación de Dinámica Molecular
8.
Biochim Biophys Acta Biomembr ; 1862(2): 183105, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682816

RESUMEN

The aim of this study was to investigate the factors that govern the activity and selectivity of two potent antimicrobial peptides (AMPs) using lipid membrane models of bacterial, erythrocyte and fungal cells. These models were used in calcein liposome leakage experiments to explore peptide efficiency. The AMPs (Pin2 and its variant Pin2[GVG]) showed highest affinity towards the bacterial models in the nanomolar range, followed by the erythrocyte and fungal systems. The presence of sterols modulated the variant's selectivity, while the wild type was unaffected. Liposome leakage experiments with Fluorescein Isothiocyanate-dextran (FITC)-dextran conjugates indicated that pore size depended on peptide concentration. Dynamic Light Scattering revealed peptide aggregation in aqueous solution, and that aggregate size was related to activity. The interacting peptides did not alter liposome size, suggesting pore forming activity rather than detergent activity. Atomic Force Microscopy showed differential membrane absorption, being greater in the bacterial model compared to the mammalian model, and pore-like defects were observed. Electrophysiological assays with the Tip-Dip Patch Clamp method provided evidence of changes in the electrical resistance of the membrane. Membrane potential experiments showed that liposomes were also depolarized in the presence of the peptides. Both peptides increased the Laurdan Generalized Polarization of the bacterial model indicating increased viscosity, on the contrary, no effect was observed with the erythrocyte and the fungal models. Peptide membrane insertion and pore formation was corroborated with Langmuir Pressure-Area isotherms and Brewster Angle Microscopy. Finally, molecular dynamics simulations were used to get an insight into the molecular mechanism of action.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Liposomas Unilamelares/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Bacterias , Membrana Celular/química , Membrana Eritrocítica/efectos de los fármacos , Hongos , Fluidez de la Membrana , Potenciales de la Membrana , Esteroles/química , Viscosidad
9.
Sci Rep ; 8(1): 17111, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459448

RESUMEN

Vasoinhibin belongs to a family of angiogenesis inhibitors generated when the fourth α-helix (H4) of the hormone prolactin (PRL) is removed by specific proteolytic cleavage. The antiangiogenic properties are absent in uncleaved PRL, indicating that conformational changes create a new bioactive domain. However, the solution structure of vasoinhibin and the location of its bioactive domain are unknown. Molecular dynamic simulation (MD) showed that the loss of H4 exposes the hydrophobic nucleus of PRL and leads to the compression of the molecule into a three-helix bundle that buries the hydrophobic nucleus again. Compression occurs by the movement of loop 1 (L1) and its interaction with α-helix 1 (H1) generating a new L1 conformation with electrostatic and hydrophobic surfaces distinct from those of PRL, that may correspond to a bioactive domain. Consistent with this model, a recombinant protein containing the first 79 amino acids comprising H1 and L1 of human PRL inhibited the proliferation and migration of endothelial cells and upregulated the vasoinhibin target genes, IL1A and ICAM1. This bioactivity was comparable to that of a conventional vasoinhibin having the 123 residues encompassing H1, L1, Η2, L2, and Η3 of human PRL. These findings extend the vasoinhibin family to smaller proteins and provide important structural information, which will aid in antiangiogenic drug development.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Endotelio Vascular/citología , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica , Proteínas Tirosina Fosfatasas/metabolismo , Inhibidores de la Angiogénesis/química , Movimiento Celular , Proliferación Celular , Células Cultivadas , Endotelio Vascular/fisiología , Humanos , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteínas Tirosina Fosfatasas/química
10.
J Biomol Struct Dyn ; 36(8): 2070-2084, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28604248

RESUMEN

Pandinin 2 (Pin2) is an alpha-helical polycationic peptide, identified and characterized from venom of the African scorpion Pandinus imperator with high antimicrobial activity against Gram-positive bacteria and less active against Gram-negative bacteria, however it has demonstrated strong hemolytic activity against sheep red blood cells. In the chemically synthesized Pin2GVG analog, the GVG motif grants it low hemolytic activity while keeping its antimicrobial activity. In this work, we performed 12 µs all-atom molecular dynamics simulation of the antimicrobial peptides (AMPs) Pin2 and Pin2GVG to explore their adsorption mechanism and the role of their constituent amino acid residues when interacting with pure POPC and pure POPG membrane bilayers. Starting from an α-helical conformation, both AMPs are attracted at different rates to the POPC and POPG bilayer surfaces due to the electrostatic interaction between the positively charged amino acid residues and the charged moieties of the membranes. Since POPG is an anionic membrane, the PAMs adhesion is stronger to the POPG membrane than to the POPC membrane and they are stabilized more rapidly. This study reveals that, before the insertion begins, Pin2 and Pin2GVG remained partially folded in the POPC surface during the first 300 and 600 ns, respectively, while they are mostly unfolded in the POPG surface during most of the simulation time. The unfolded structures provide for a large number of intermolecular hydrogen bonds and stronger electrostatic interactions with the POPG surface. The results show that the aromatic residues at the N-terminus of Pin2 initiate the insertion process in both POPC and POPG bilayers. As for Pin2GVG in POPC the C-terminus residues seem to initiate the insertion process while in POPG this process seems to be slowed down due to a strong electrostatic attraction. The membrane conformational effects upon PAMs binding are measured in terms of the area per lipid and the contact surface area. Several replicas of the systems lead to the same observations.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Péptidos/química , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/metabolismo , Sitios de Unión , Humanos , Membrana Dobles de Lípidos/metabolismo , Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Conformación Proteica , Venenos de Escorpión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...