Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38798412

RESUMEN

Salmonellosis, caused by Salmonella enterica serovar Typhimurium, is a significant global threat. Host immunity limits bacterial replication by inducing hepcidin, which degrades ferroportin, reducing iron transfer. However, this boosts macrophage iron storage, aiding intracellular pathogens like Salmonella. Mice lacking ferritin heavy chain (FTH1) in myeloid cells suffer worsened Salmonella infection. Nuclear receptor co-activator 4 (NCOA4) regulates iron release via FTH1 degradation during low iron, but its role in salmonellosis is unclear. Here, we reveal that myeloid NCOA4 deficiency augments spleen iron levels and increases cellular iron accumulation, oxidative stress, and ferroptosis in bone marrow-derived macrophages. This deficiency also increases susceptibility to Salmonella-induced colitis in mice. Mechanistically, NCOA4 suppresses oxidative stress by directly binding to the E3 ubiquitin ligase Kelch-like ECH-associated protein 1 (KEAP1) and stabilizing the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2). Activation of NRF2 protects myeloid NCOA4 knockout mice from Salmonella-induced colitis. Antioxidant Tempol and myeloid cell-targeted curcumin offer protection against colitis in myeloid NCOA4-deficient mice. A low iron diet and ferroptosis inhibition also mitigate the heightened colitis in these mice. Overexpression of myeloid cell-specific NCOA4 confers protection against Salmonella-induced colitis via upregulating NRF2 signaling. Serum iron was reduced in myeloid NCOA4-overexpressing mice, but not in NCOA4-deficient mice. Targeted serum metabolomics analysis revealed that many lipids were decreased in myeloid NCOA4-deficient mice, while several of them were increased in myeloid NCOA4-overexpressing mice. Together, this study not only advances our understanding of NCOA4/KEAP1/NRF2/ferroptosis axis but also paves the way for novel myeloid cell-targeted therapies to combat salmonellosis.

2.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712078

RESUMEN

Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) in order to drive a diverse set of mechanistic steps during translation. Despite its importance, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is an equilibrium mixture of the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this equilibrium and show that, rather than being driven by the full complex, mRNA binding by eIF3 is instead driven by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in the mRNA recruitment step of translation initiation and establish a mechanistic framework for explaining and investigating the other activities of eIF3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...