Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biochem Cell Biol ; 170: 106558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479581

RESUMEN

Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.


Asunto(s)
Fosfotransferasas , Proteínas Serina-Treonina Quinasas , Fosfotransferasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Autophagy ; 18(12): 2851-2864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35373701

RESUMEN

Mutations in the ubiquitin ligase PRKN (parkin RBR E3 ubiquitin protein ligase) are associated with Parkinson disease and defective mitophagy. Conceptually, PRKN-dependent mitophagy is classified into two phases: 1. PRKN recruits to and ubiquitinates mitochondrial proteins; 2. formation of phagophore membrane, sequestering mitochondria for degradation. Recently, endosomal machineries are reported to contribute to the later stage for membrane assembly. We reported a role for endosomes in the events upstream of phase 1. We demonstrate that the endosomal ubiquitin ligase RFFL (ring finger and FYVE like domain containing E3 ubiquitin protein ligase) associated with damaged mitochondria, and this association preceded that of PRKN. RFFL interacted with PRKN, and stable recruitment of PRKN to damaged mitochondria was substantially reduced in RFFL KO cells. Our study unraveled a novel role of endosomes in modulating upstream pathways of PRKN-dependent mitophagy initiation.Abbreviations CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescence protein; KO: knockout; PRKN: parkin RBR E3 ubiquitin protein ligase; RFFL: ring finger and FYVE like domain containing E3 ubiquitin protein ligase; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; WT: wild-type.


Asunto(s)
Autofagia , Proteínas Quinasas , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Mitocondrias/metabolismo , Ubiquitina/metabolismo , Endosomas/metabolismo
3.
Front Immunol ; 13: 1085057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726968

RESUMEN

Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.


Asunto(s)
Enfermedades Autoinmunes , Exosomas , Neoplasias , Humanos , Exosomas/metabolismo , Inflamación , Neoplasias/diagnóstico , Neoplasias/terapia , Inmunidad Innata , Enfermedades Autoinmunes/metabolismo
4.
Free Radic Biol Med ; 161: 198-211, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065180

RESUMEN

The redox-active transition metals such as copper, iron, chromium, vanadium, and silica are known for its ROS generation via mechanisms such as Haber-Weiss and Fenton-type reactions. Nanoparticles of these metals induce oxidative stress due to acellular factors owing to their small size and more reactive surface area, leading to various cellular responses. The intrinsic enzyme-like activity of nano vanadium has fascinated the scientific community. However, information concerning their cellular uptake and time-dependent induced effects on their cellular organelles and biological activity is lacking. This comprehensive study focuses on understanding the precise molecular interactions of vanadium pentoxide nanoparticles (VnNp) and evaluate their specific "nano" induced effects on MDA-MB-231 cancer cells. Understanding the mechanism behind NP-induced ROS generation could help design a model for selective NP induced toxicity, useful for cancer management. The study demonstrated the intracellular persistence of VnNp and insights into its molecular interactions with various organelles and its overall effects at the cellular level. Where triple-negative breast cancer MDA-MB-231 cells resulted in 59.6% cell death towards 48 h of treatment and the normal fibroblast cells showed only 15.4% cell death, indicating an inherent anticancer property of VnNp. It acts as an initial reactive oxygen species quencher, by serving itself as an antioxidant, while; it was also found to alter the cellular antioxidant system with prolonged incubation. The VnNp accumulated explicitly in the lysosomes and mitochondria and modulated various cellular processes including impaired lysosomal function, mitochondrial damage, and autophagy. At more extended time points, VnNp influenced cell cycle arrest, inhibited cell migration, and potentiated the onset of apoptosis. Results are indicative of the fact that VnNp selectively induced breast cancer cell death and hence could be developed as a future drug molecule for breast cancer management. This could override the most crucial challenge of chemo-resistance that still remain as the main hurdle to cancer therapy.


Asunto(s)
Autofagia , Nanopartículas , Apoptosis , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Compuestos de Vanadio
5.
Mol Biol Cell ; 23(5): 896-909, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22219374

RESUMEN

Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simultaneous silencing of Atg2A and Atg2B causes a block in autophagic flux and accumulation of unclosed autophagic structures containing most Atg proteins. Atg2A localizes on the autophagic membrane, as well as on the surface of lipid droplets. The Atg2A region containing amino acids 1723-1829, which shows relatively high conservation among species, is required for localization to both the autophagic membrane and lipid droplet and is also essential for autophagy. Depletion of both Atg2A and Atg2B causes clustering of enlarged lipid droplets in an autophagy-independent manner. These data suggest that mammalian Atg2 proteins function both in autophagosome formation and regulation of lipid droplet morphology and dispersion.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/metabolismo , Secuencia de Aminoácidos , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Células HeLa , Humanos , Lípidos/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Fagosomas/genética , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...