Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Anal Chem ; 96(19): 7706-7713, 2024 May 14.
Article En | MEDLINE | ID: mdl-38688471

Capillary electrophoresis (CE) is presented as a technique for the separation of polystyrene nanoparticles (NPs, particle diameters ranging from 30 to 300 nm) through a bare fused silica capillary and ultraviolet detection. The proposed strategy was also assessed for other types of nanoplastics, finding that stronger alkaline conditions, with an ammonium hydroxide buffer (7.5%, pH = 11.9), enabled the separation of poly(methyl methacrylate), polypropylene, and polyethylene NP for the first time by means of CE for particle diameters below 200 nm. Particle behavior has been investigated in terms of its effective electrophoretic mobility, showing an increasing absolute value of effective electrophoretic mobility from the smaller to the larger sizes. On the other hand, the absolute value of surface charge density decreased with increasing size of NPs. It was demonstrated and quantified that the separation mechanism was a combination of linear and nonlinear electrophoretic effects. This work is the first report on the quantification of nonlinear electrophoretic effects on nanoplastic particles in a CE system.

2.
J Affect Disord ; 349: 286-296, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38199412

BACKGROUND: Early life stress is a major risk factor for later development of psychiatric disorders, including post-traumatic stress disorder (PTSD). An intricate relationship exists between various neurotransmitters (such as glutamate, norepinephrine or serotonin), calcium/calmodulin-dependent protein kinase II (CaMKII), as an important regulator of glutamatergic synaptic function, and PTSD. Here, we developed a double-hit model to investigate the interaction of maternal deprivation (MD) as an early life stress model and single prolonged stress (SPS) as a PTSD model at the behavioral and molecular levels. METHODS: Male Wistar rats exposed to these stress paradigms were subjected to a comprehensive behavioral analysis. In hippocampal synaptosomes we investigated neurotransmitter release and glutamate concentration. The expression of CaMKII and the content of monoamines were determined in selected brain regions. Brain-derived neurotrophic factor (BDNF) mRNA was quantified by radioactive in situ hybridization. RESULTS: We report a distinct behavioral phenotype in the double-hit group. Double-hit and SPS groups had decreased hippocampal presynaptic glutamatergic function. In hippocampus, double-hit stress caused a decrease in autophosphorylation of CaMKII. In prefrontal cortex, both SPS and double-hit stress had a similar effect on CaMKII autophosphorylation. Double-hit stress, rather than SPS, affected the norepinephrine and serotonin levels in prefrontal cortex, and suppressed BDNF gene expression in prefrontal cortex and hippocampus. LIMITATIONS: The study was conducted in male rats only. The affected brain regions cannot be restricted to hippocampus, prefrontal cortex and amygdala. CONCLUSION: Double-hit stress caused more pronounced and distinct behavioral, molecular and functional changes, compared to MD or SPS alone.


Serotonin , Stress Disorders, Post-Traumatic , Humans , Rats , Male , Animals , Serotonin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , Glutamic Acid/metabolism , Norepinephrine , Maternal Deprivation , Down-Regulation , Brain/metabolism , Hippocampus/metabolism , Stress Disorders, Post-Traumatic/genetics , Disease Models, Animal
3.
Cells ; 12(24)2023 12 11.
Article En | MEDLINE | ID: mdl-38132134

Tryptophan (TRP) catabolites exert neuroactive effects, with the plethora of evidence suggesting that kynurenic acid (KYNA), a catabolite of the kynurenine pathway (KP), acts as the regulator of glutamate and acetylcholine in the brain, contributing to the schizophrenia pathophysiology. Newer evidence regarding measures of KP metabolites in the blood of schizophrenia patients and from the central nervous system suggest that blood levels of these metabolites by no means could reflect pathological changes of TRP degradation in the brain. The aim of this study was to investigate plasma concentrations of TRP, kynurenine (KYN) and KYNA at the acute phase and remission of schizophrenia in a prospective, case-control study of highly selected and matched schizophrenia patients and healthy individuals. Our study revealed significantly decreased KYN and KYNA in schizophrenia patients (p < 0.001), irrespective of illness state, type of antipsychotic treatment, number of episodes or illness duration and no differences in the KYN/TRP ratio between schizophrenia patients and healthy individuals. These findings could be interpreted as indices that kynurenine pathway might not be dysregulated in the periphery and that other factors contribute to observed disturbances in concentrations, but as our study had certain limitations, we cannot draw definite conclusions. Further studies, especially those exploring other body compartments that participate in kynurenine pathway, are needed.


Antipsychotic Agents , Schizophrenia , Humans , Kynurenine/metabolism , Kynurenic Acid/metabolism , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Case-Control Studies , Prospective Studies , Tryptophan/metabolism
4.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37764639

Accurate characterization of Pt-Pd alloy nanoparticle clusters (NCs) is crucial for understanding their synthesis using Gas-Diffusion Electrocrystallization (GDEx). In this study, we propose a comprehensive approach that integrates conventional sizing techniques-scanning electron microscopy (SEM) and dynamic light scattering (DLS)-with innovative single-particle inductively coupled plasma-sector field mass spectrometry (spICP-SFMS) to investigate Pt-Pd alloy NC formation. SEM and DLS provide insights into morphology and hydrodynamic sizes, while spICP-SFMS elucidates the particle size and distribution of Pt-Pd alloy NCs, offering rapid and orthogonal characterization. The spICP-SFMS approach presented enables detailed characterization of Pt-Pd alloy NCs, which was previously challenging due to the absence of multi-element capabilities in conventional spICP-MS systems. This innovative approach not only enhances our understanding of bimetallic nanoparticle synthesis, but also paves the way for tailoring these materials for specific applications, marking a significant advancement in the field of nanomaterial science.

5.
Anal Bioanal Chem ; 415(1): 7-16, 2023 Jan.
Article En | MEDLINE | ID: mdl-36085421

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.


Food , Fractionation, Field Flow , Nanoparticles , Water Pollutants, Chemical , Humans , Fractionation, Field Flow/methods , Microplastics/analysis , Nanoparticles/analysis , Particle Size , Plastics/analysis , Water Pollutants, Chemical/analysis , Food Analysis
6.
Sci Total Environ ; 851(Pt 1): 158226, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-35998716

The Sea Scheldt estuary has been suggested to be a significant pathway for transfer of plastic debris to the North Sea. We have studied 12,801 plastic items that were collected in the Sea Scheldt estuary (Belgium) during 3 sampling campaigns (in spring, summer, and autumn) using a technique called anchor netting. The investigation results indicated that the abundance of plastic debris in the Scheldt River was on average 1.6 × 10-3 items per m3 with an average weight of 0.38 × 10-3 g per m3. Foils were the most abundant form, accounting for >88 % of the samples, followed by fragments for 11 % of the samples and filaments, making up for <1 % of the plastic debris. FTIR spectroscopy of 7 % of the total number of plastic debris items collected in the Sea Scheldt estuary (n = 883) revealed that polypropylene (PP), polyethylene (PE), and polystyrene (PS) originating from disposable packaging materials were the most abundant types of polymers. A limited number of plastic debris items (n = 100) were selected for non-destructive screening of their mineral element composition using micro-X-ray fluorescence spectrometry (µXRF). The corresponding results revealed that S, Ca, Si, P, Al, and Fe were the predominant mineral elements. These elements originate from flame retardants, mineral fillers, and commonly used catalysts for plastic production. Finally, machine learning algorithms were deployed to test a new concept for forensic identification of the different plastic entities based on the most important elements present using a limited subset of PP (n = 36) and PE (n = 35) plastic entities.


Flame Retardants , Water Pollutants, Chemical , Environmental Monitoring/methods , Estuaries , Flame Retardants/analysis , Plastics/analysis , Polyethylene/analysis , Polymers , Polypropylenes/analysis , Polystyrenes/analysis , Waste Products/analysis , Water Pollutants, Chemical/analysis
7.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Article En | MEDLINE | ID: mdl-34685161

A new comprehensive analytical approach based on single-particle inductively coupled plasma-sector field mass spectrometry (spICP-SFMS) and electrical asymmetric-flow field-flow-fractionation combined with multi-angle light scattering detection (EAF4-MALS) has been examined for the characterization of galactosamine-terminated poly(N-hydroxyethyl acrylamide)-coated gold nanorods (GNRs) in two different degrees of polymerization (DP) by tuning the feed ratio (short: DP 35; long: DP 60). spICP-SFMS provided information on the particle number concentration, size and size distribution of the GNRs, and was found to be useful as an orthogonal method for fast characterization of GNRs. Glycoconjugated GNRs were separated and characterized via EAF4-MALS in terms of their size and charge and compared to the bare GNRs. In contrast to spICP-SFMS, EAF4-MALS was also able of providing an estimate of the thickness of the glycopolymer coating on the GNRs surface.

8.
Anal Bioanal Chem ; 413(1): 7-15, 2021 Jan.
Article En | MEDLINE | ID: mdl-32851456

Development of analytical methods for the characterization (particle size determination, identification, and quantification) of the micro- and nanoscale plastic debris in the environment is a quickly emerging field and has gained considerable attention, not only within the scientific community, but also on the part of policy makers and the general public. In this Trends paper, the importance of developing and further improving analytical methodologies for the detection and characterization of sub-20-µm-range microplastics and especially nanoplastics is highlighted. A short overview of analytical methodologies showing considerable promise for the detection and characterization of such micro- and nanoscale plastic debris is provided, with emphasis on recent developments in mass spectrometry (MS)-based analytical methods. Novel hyphenated techniques combining the strengths of different analytical methods, such as field flow fractionation and MS-based detection, may be a way to adequately address the smallest fractions in plastic debris analysis, making such approaches worthwhile to be further explored.

9.
Talanta ; 215: 120921, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32312463

The implementation and enforcement of product labeling obligation as required, for example, by the cosmetic product regulation, needs simple and precise validated analytical methods. This also applies to the analysis of nanoparticles in products such as cosmetics. However, the provision of such methods is often hampered by inaccurate sizing due to unwanted nanoparticle changes, interference of matrix components with sizing and interactions between nanoparticles and analytical instrumentation. It is, therefore, necessary to develop appropriate sample preparation methods that preserve NP properties and reduce or remove matrix compounds that interfere with sizing. Further, accurate particle size analysis of samples containing unknown and possibly multiple nanoparticulate constituents is needed. In this study, we evaluated three sample preparation methods to identify and quantify TiO2 nanoparticles in sunscreens. Specifically, we used a combination of ultracentrifugation and hexane washing, thermal destruction of the matrix, and surfactant assisted particle extraction. The method accuracy was assessed by two internal reference samples: pristine TiO2 nanoparticles (NM104) and similar TiO2 nanoparticles dispersed in a sunscreen matrix. The PSDs were determined using an asymmetrical flow field-flow fractionation hyphenated with multi-angle light scattering and inductively coupled plasma-mass spectroscopy. Particle sizing was based on size calibration of the particle retention time in the AF4. Computation of radius of gyration from MALS data was used as an orthogonal particle sizing approach to verify ideal elution and particle size data from the AF4 calibration. Among the three tested sample preparation methods surfactant assisted particle extraction revealed TiO2 nanoparticle recoveries of above 90% and no increase in particle size due to sample preparation was observed. Finally, the sample preparation methods were applied to two commercial sunscreen samples revealing the existence of TiO2-NP < 100 nm. Conclusively, the surfactant assisted particle extraction method can provide valid data for TiO2-NPs in sunscreen and possibly for cosmetic samples of similar matrix.


Nanoparticles/analysis , Sunscreening Agents/chemistry , Titanium/analysis , Particle Size , Surface Properties
10.
PLoS One ; 14(7): e0218920, 2019.
Article En | MEDLINE | ID: mdl-31269081

INTRODUCTION: The neuroendocrine background of acute sleep fragmentation in obstructive sleep apnea and sleep fragmentation involvement in psychiatric comorbidities, common in these patients, are still largely unknown. The aim of this study was to determine the effects of short-term experimental sleep fragmentation on anxiety -like behavior and hormonal status in rats. METHODS: Male rats were adapted to treadmill (ON and OFF mode with belt speed set on 0.02m/s and 0.00m/s) and randomized to: 1) treadmill control (TC, only OFF mode); 2) motion, activity control (AC, 10min ON and 30min OFF mode) and 3) sleep fragmentation (SF, 30s ON and 90s OFF mode) group. Six hours later, the animals were tested in the open field, elevated plus maze and light/dark test (n = 8/group). Testosterone, estradiol, progesterone and corticosterone were determined in separate animal cohort immediately upon sleep fragmentation (n = 6/group). RESULTS: SF rats showed decreased rearings number, decreased time spent in the central area and increased thigmotaxic index compared to TC and AC rats in the open field test. Similarly, increased anxiety upon sleep fragmentation was observed in the elevated plus maze and the light/dark test. Significantly lower testosterone, estradiol and progesterone levels were determined in SF in comparison to AC and TC groups, while there was no significant difference in the levels of corticosterone. CONCLUSION: Short term sleep fragmentation enhances anxiety-related behavior in rats, which could be partly mediated by the observed hormonal changes presented in the current study in form of testosterone, estradiol and progesterone depletion.


Sleep Apnea Syndromes/physiopathology , Sleep Deprivation/physiopathology , Sleep/physiology , Stress Disorders, Traumatic, Acute/physiopathology , Animals , Anxiety/complications , Anxiety/physiopathology , Behavior, Animal/physiology , Corticosterone/cerebrospinal fluid , Disease Models, Animal , Estradiol/metabolism , Exercise Test , Humans , Maze Learning , Progesterone/cerebrospinal fluid , Rats , Sleep Apnea Syndromes/cerebrospinal fluid , Sleep Deprivation/cerebrospinal fluid , Sleep Deprivation/complications , Stress Disorders, Traumatic, Acute/cerebrospinal fluid , Testosterone/cerebrospinal fluid
11.
Biomed Res Int ; 2019: 3426092, 2019.
Article En | MEDLINE | ID: mdl-31281833

Anxiety is one of the most frequent psychiatric disorders. Despite the fact that most studies describe an anxiolytic effect of testosterone, hyperandrogenemia in mothers is assumed to be related to an increased risk of mood disorders in their offspring. An increasing body of scientific evidence suggests that an altered expression of interneuronal markers of the hippocampus may be the cause of anxiety. The aim of this study was to examine the influence of maternal hyperandrogenemia on behavioral parameters of anxiety-like behavior, neuropeptide Y (NPY) and parvalbumin (PV) expression in the hippocampus, and the level of the brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex. Pregnant female Wistar albino rats were treated with testosterone undecanoate on the 20th day of gestation. Anxiety-like behavior in adult female offspring was evaluated by the elevated plus maze test and the open field. The number of PV and NPY immunoreactive cells in the hippocampus was determined immunohistochemically. The level of BDNF expression in the hippocampus and cerebral cortex was analyzed with the Western blot test. Prenatal hyperandrogenization increased anxiety-like behavior in female offspring and decreased expression of NPY+ and PV+ in the CA1 region of the hippocampus as compared to the control group. BDNF expression in the hippocampus and cerebral cortex of prenatally androgenized female offspring was significantly increased in comparison with the controls. Prenatal hyperandrogenization may be the cause of anxiety-like behavior in female offspring. Decrease in NPY and PV expression in the hippocampus may explain the possible mechanism of hyperandrogenization induced anxiety.


Anxiety/etiology , Behavior, Animal , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Interneurons/physiology , Neural Inhibition/physiology , Prenatal Exposure Delayed Effects/etiology , Virilism/complications , Animals , Anxiety/blood , Anxiety/physiopathology , Estradiol/blood , Female , Hippocampus/physiopathology , Maze Learning , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/physiopathology , Rats, Wistar , Testosterone/administration & dosage , Testosterone/blood , Testosterone/pharmacology , Virilism/physiopathology
12.
Oxid Med Cell Longev ; 2018: 3273654, 2018.
Article En | MEDLINE | ID: mdl-29849881

Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.


Brain Ischemia/drug therapy , Brain Ischemia/enzymology , Cholecalciferol/pharmacology , Matrix Metalloproteinase 9/metabolism , NADPH Oxidases/metabolism , Animals , Brain Ischemia/pathology , Disease Models, Animal , Gerbillinae , Male
13.
Exp Gerontol ; 110: 151-157, 2018 09.
Article En | MEDLINE | ID: mdl-29906492

Ageing affects various physiological and metabolic processes in a body and a progressive accumulation of oxidative damage stands out as often used explanation. One of the most powerful scavenger of reactive oxygen species (ROS) in all organs is melatonin. A majority of melatonin supplied to the body via blood originates from the pineal gland. However, we have been interested in a locally produced melatonin. We have used 2.5- and 36-months-old Wistar rats. Tissues were collected and gene expression of AA-NAT and ASMT, the two key enzymes in a synthesis of melatonin, was determined in brain, liver, kidney, heart, skin, and intestine. Since melatonin can influence antioxidant enzymes, the activity of superoxide dismutase (SOD) and catalase (CAT), and the level of GSH were measured in liver. In addition, Copper (Cu), Zinc (Zn), and Manganese (Mn) were also determined in liver since these microelements might affect the activity of antioxidant enzymes. The expression of AA-NAT and ASMT was increased in liver and skin of old animals. A positive correlation in AA-NAT and ASMT expression was observed in liver, intestine and kidney. Moreover, the activity of CAT enzyme in liver was increased while SOD activity was decreased. SOD and CAT were probably affected by the observed decreased amount of Cu, Zn, and Mn in liver of old animals. In our model, extrapineal melatonin pathway in ageing consisted of complex interplay of locally produced melatonin, activities of SOD and CAT, and adequate presence of Cu, Zn and Mn microelements in order to defend organs against oxidative damage.


Aging/metabolism , Liver/metabolism , Melatonin/metabolism , Animals , Antioxidants/metabolism , Catalase/metabolism , Copper/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Zinc/metabolism
14.
Stress ; 21(6): 494-502, 2018 Nov.
Article En | MEDLINE | ID: mdl-29804499

Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

15.
World J Biol Psychiatry ; 19(sup2): S41-S51, 2018.
Article En | MEDLINE | ID: mdl-27841086

OBJECTIVES: To explore the serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular cell adhesion molecule-1 (sICAM-1), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in patients with bipolar disorder (BD), with regard to acute episode characteristics, course of the disorder and treatment. METHODS: The study group consisted of 83 patients diagnosed with BD type I. The control group consisted of 73 healthy individuals, matched with the study group according to age, gender and body mass index. The serum levels of sVCAM-1, sICAM-1, TNF-α and IL-6 were measured by ELISA. RESULTS: Compared with healthy controls, significantly elevated levels of IL-6 and sICAM-1 and significantly lower levels of TNF-α and sVCAM-1 were identified in acute and remission phases of BD. The acute serum levels of sVCAM-1 were associated with the type and severity of acute mood symptoms as well as with course of illness characteristics. TNF-α was associated with duration of untreated disorder and type of treatment. CONCLUSIONS: BD is related to both acute and long-term alterations of immune mediators, including adhesion molecules. The potential immunomodulatory role of pharmacotherapeutic treatment is also to be considered in BD.


Bipolar Disorder/blood , Intercellular Adhesion Molecule-1/blood , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Vascular Cell Adhesion Molecule-1/blood , Adult , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Serbia
16.
Sci Total Environ ; 618: 1619-1627, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29111242

Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133-140mmolkg-1day-1, indicating a milled ZVI life-time of 128-135days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7.

17.
BMC Pharmacol Toxicol ; 18(1): 65, 2017 10 11.
Article En | MEDLINE | ID: mdl-29020988

BACKGROUND: The presentation of schizophrenia (SCH) symptoms differs between the sexes. Long-term treatment with antipsychotics is frequently associated with decreased bone mineral density, increased fracture risk and metabolic side effects. Perinatal phencyclidine (PCP) administration to rodents represents an animal model of SCH. The aim of this study was to assess the effects of chronic haloperidol and clozapine treatment on bone mass, body composition, corticosterone, IL-6 and TNF-α concentrations and metabolic parameters in male and female rats perinatally treated with PCP. METHODS: Six groups of male and six groups of female rats (n = 6-12 per group) were subcutaneously treated on 2nd, 6th, 9th and 12th postnatal day (PN), with either PCP (10 mg/kg) or saline. At PN35, one NaCl and PCP group (NaCl-H and PCP-H) started receiving haloperidol (1 mg/kg/day) and one NaCl and PCP group (NaCl-C and PCP-C) started receiving clozapine (20 mg/kg/day) dissolved in drinking water. The remaining NaCl and PCP groups received water. Dual X-ray absorptiometry measurements were performed on PN60 and PN98. Animals were sacrificed on PN100. Femur was analysed by light microscopy. Concentrations of corticosterone, TNF-α and IL-6 were measured in serum samples using enzyme-linked immunosorbent assay (ELISA) commercially available kits. Glucose, cholesterol and triacylglycerol concentrations were measured in serum spectrophotometrically. RESULTS: Our results showed that perinatal PCP administration causes a significant decrease in bone mass and deterioration in bone quality in male and female rats. Haloperidol had deleterious, while clozapine had protective effect on bones. The effects of haloperidol on bones were more pronounced in male rats. It seems that the observed changes are not the consequence of the alterations of corticosterone, IL-6 and TNF-α concentration since no change of these factors was observed. Clozapine induced increase of body weight and retroperitoneal fat in male rats regardless of perinatal treatment. Furthermore, clozapine treatment caused sex specific increase in pro-inflammatory cytokines. CONCLUSION: Taken together our findings confirm that antipsychotics have complex influence on bone and metabolism. Evaluation of potential markers for individual risk of antipsychotics induced adverse effects could be valuable for improvement of therapy of this life-long lasting disease.


Antipsychotic Agents/pharmacology , Bone and Bones/drug effects , Clozapine/pharmacology , Haloperidol/pharmacology , Schizophrenia/metabolism , Animals , Bone Density/drug effects , Bone and Bones/metabolism , Corticosterone/blood , Female , Interleukin-6/blood , Male , Phencyclidine , Rats, Wistar , Schizophrenia/blood , Schizophrenia/chemically induced , Sex Characteristics , Tumor Necrosis Factor-alpha/blood
18.
Environ Sci Technol ; 51(16): 9202-9209, 2017 Aug 15.
Article En | MEDLINE | ID: mdl-28682625

The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers. Column experiments demonstrated that a low concentration (10 mg/L) Na humate solution in synthetic water significantly improved the mobility of PAA-nano-ZVI within a standard sand medium. This effect was, however, reduced in more heterogeneous natural collector media from contaminated sites, as not an adequate amount of the collector sites favorable for PAA-nano-ZVI attachment within these media appear to have been screened by the Na humate. Na humate did not interact with the surfaces of acid-washed glass beads or standard Ottawa sand, which presented less surface heterogeneity. Important factors influencing the effectiveness of Na humate application in improving PAA-nano-ZVI mobility include the solution chemistry, the Na humate concentration, and the collector properties.


Ions , Metal Nanoparticles , Sodium , Iron , Polymers , Silicon Dioxide
19.
Oxid Med Cell Longev ; 2017: 7390516, 2017.
Article En | MEDLINE | ID: mdl-28408971

Maternal deprivation (MD) causes perinatal stress, with subsequent behavioral changes which resemble the symptoms of schizophrenia. The NADPH oxidase is one of the major generators of reactive oxygen species, known to play a role in stress response in different tissues. The aim of this study was to elucidate the long-term effects of MD on the expression of NADPH oxidase subunits (gp91phox, p22phox, p67phox, p47phox, and p40phox). Activities of cytochrome C oxidase and respiratory chain Complex I, as well as the oxidative stress parameters using appropriate spectrophotometric techniques were analyzed. Nine-day-old Wistar rats were exposed to a 24 h maternal deprivation and sacrificed at young adult age. The structures affected by perinatal stress, cortex, hippocampus, thalamus, and caudate nuclei were investigated. The most prominent findings were increased expressions of gp91phox in the cortex and hippocampus, increased expression of p22phox and p40phox, and decreased expression of gp91phox, p22phox, and p47phox in the caudate nuclei. Complex I activity was increased in all structures except cortex. Content of reduced glutathione was decreased in all sections while region-specific changes of other oxidative stress parameters were found. Our results indicate the presence of long-term redox alterations in MD rats.


Brain/metabolism , NADPH Oxidases/metabolism , Animals , Caudate Nucleus/metabolism , Cerebellar Cortex/metabolism , Down-Regulation , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Hippocampus/metabolism , Maternal Deprivation , Membrane Glycoproteins/metabolism , NADPH Oxidase 2 , Oxidation-Reduction , Oxidative Stress , Phosphoproteins/metabolism , Rats , Rats, Wistar , Up-Regulation
20.
J Affect Disord ; 207: 47-52, 2017 Jan 01.
Article En | MEDLINE | ID: mdl-27693464

BACKGROUND: Affective temperaments are intermediate phenotypes for major affective disorders and are reported to have a neuroimmune etiopathogenesis. Here we investigated the role of soluble intercellular cell adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in affective temperaments and mood symptoms in healthy adults. METHODS: Healthy adults (n=94) were screened for psychiatric disorders using the nonpatient version of the Structured Clinical Interview for DSM-IV-I and II. Subjects with medical conditions associated with changes in inflammatory response were excluded, deriving the final sample (n=68). Affective temperaments were evaluated with Temperament Evaluation of Memphis, Pisa, Paris and San Diego-Autoquestionnaire (TEMPS-A). State mood symptoms were assessed using the Young Mania Rating Scale and Montgomery-Åsberg Depression Rating Scale. Serum sICAM-1 and sVCAM-1 levels were measured using enzyme-linked immunosorbent assay. RESULTS: After adjusting for confounders (age, gender, BMI, and smoking habits), a high negative correlation between depressive and irritable temperament TEMPS-A scores and sVCAM-1 levels was detected. Although we identified no association between sICAM-1 levels and affective temperament scores, sICAM-1 was related to the state severity of manic symptoms. In a multiple linear regression model, sVCAM-1 remained a significant predictor of depressive but not irritable temperament scores. LIMITATIONS: The temperaments were estimated on the basis of self-report questionnaire. CONCLUSIONS: Our findings suggest that sVCAM-1 is related to affective temperaments, and it is a trait marker for liability to mood disorders. This relationship between alterations in cellular adhesion and affective temperament may be important for vulnerability to affective disorders.


Depression/blood , Intercellular Adhesion Molecule-1/blood , Irritable Mood , Temperament , Vascular Cell Adhesion Molecule-1/blood , Adult , Affect , Biomarkers/blood , Bipolar Disorder/blood , Depressive Disorder, Major/blood , Diagnostic and Statistical Manual of Mental Disorders , Enzyme-Linked Immunosorbent Assay , Female , Healthy Volunteers , Humans , Linear Models , Male , Mood Disorders/blood , Self Report , Surveys and Questionnaires
...