Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Bioresour Technol ; 398: 130516, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432543

In this study, the exopolysaccharide from cyanobacteria was used for detoxification of acid hydrolysate of water hyacinth biomass. Exopolysaccharide-hydrogel showed phenolics and furans removal of 86 % and 97 %, respectively, with sugar recovery of 98.3 %. The fermentation of detoxified acid hydrolysate was integrated with that of pretreated biomass subjected to enzymatic saccharification derived from commercial cellulose (ESF) or from microbe (MSF). The maximum hydrogen production of 69.2 mL/g-VS was obtained in MSF, which is 1.2- and 1.6-fold higher than ESF and undetoxified acid hydrolysate, respectively. Additionally, the methane production of 12.6 mL/g-VS by mixed methanogenic consortia was obtained using the spent liquor containing volatile fatty acids. This enhanced hydrogen and methane production in subsequent microbial processes is mainly attributed to the selective removal of inhibitors in combination with an integrated carbohydrate utilization.


Eichhornia , Hydrogen , Hydrogels , Hydrolysis , Methane
2.
Chemosphere ; 299: 134342, 2022 Jul.
Article En | MEDLINE | ID: mdl-35307390

World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.


Biofuels , Cyanobacteria , Cyanobacteria/metabolism , Fossil Fuels , Metabolic Engineering/methods , Photosynthesis/genetics
3.
J Infect Public Health ; 15(4): 491-497, 2022 Apr.
Article En | MEDLINE | ID: mdl-34688575

BACKGROUND: Lichens were used as an ailment in the traditional medicine for treating various disorders for centuries. Since there is less evidence in the literature about the medicinal property of Parmelia sulcata (P. sulcata), we made a pioneer attempt to explore the antioxidant and antimicrobial properties of lichens. METHODS: In the present study, the three Samples were collected by using the column chromatography by elucidating the ethyl acetate extract of P. sulcata, and the samples were subjected to DPPH and ABTS assays to find the free radical scavenging activity, total phenols and flavonoids were estimated. The minimum inhibitory concentration was evaluated against the bacterial species (Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungal species (Candida albicans and Aspergillus fumigatus) by the microdilution method. The best activity sample was analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transmission Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). RESULTS: The results shown that all the samples contain phenols and flavonoids which are responsible for antioxidants, antibacterial and antifungal activities. Among that sample-3 shown best antimicrobial activity and it was analyzed and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. CONCLUSION: The outcome of the study suggests that sample-3 shown good antimicrobial activity and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. It can be a resource for further studies.


Anti-Infective Agents , Lichens , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/pharmacology , Humans , Lichens/chemistry , Microbial Sensitivity Tests , Parmeliaceae , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared
4.
Environ Res ; 199: 111375, 2021 08.
Article En | MEDLINE | ID: mdl-34048745

The Lichen, Parmelia sulcata synthesizes various secondary metabolites, in which phenolic based compounds received much attention due to their importance in biomedical application. Especially the phenolic compound was effective against the cancer treatment. An effective administration of such plant natural product can represent a significant conventional management of cancer in terms of chemoprevention. The nanomedicines are group of agents that selectively interfere the cancer cells which leads to reduction of side effect thereby reducing the doses. Silver nanoparticles is a promising antitumor agent, however, the conventional production of silver nanoparticles have many drawbacks which led to increase in need of eco-friendly biological production methods. In this study, we made an attempt to synthesise a nano silver (Ps-AgNPs) from phenolic extract of lichen Parmelia sulcata extract. The Ps-AgNps was applied for anticancer activity using MCF-7 cells and the effect was characterised by western blotting method. The FTIR, XRD, UV and TEM results confirms the presence of silver nanoparticles in phenolic extract of lichen Parmelia sulcata. The cytotoxicity assay shows that the Ps-AgNPs is toxic against cancer cells (MCF-7) but not to normal cells (NIH3T3), which confirm the selective induction of cell death (apoptosis) against cancer cells. The Western blot analysis also clearly indicates the down regulation of inflammatory genes (TNF-alpha and IL-6) and cell cycle genes (PCNA and Cyclin-D1) thus promoting intrinsic apoptotic pathway. The results suggest that Ps-AgNPs can effectively kill cancer cells and can be used as an alternative therapeutic agent for cancer treatment.


Antineoplastic Agents , Metal Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Apoptosis , Humans , MCF-7 Cells , Metal Nanoparticles/toxicity , Mice , NIH 3T3 Cells , Parmeliaceae , Plant Extracts/pharmacology , Silver/toxicity
5.
Front Plant Sci ; 11: 74, 2020.
Article En | MEDLINE | ID: mdl-32117402

In this study, the Synechococcus elongatus PCC 7942 (hereafter S. elongatus) was engineered by the glgC knockout as well as the insertion of the pdc-adh genes from two different microorganisms. The insertion of pdc-adh genes increased the ethanol synthesis with further improvement in the productivity upon the destruction of glycogen synthesis pathway and the supplementation of cofactor. The abolition of glycogen synthesis pathway led to a considerable increase of the engineered S. elongatus metabolites involved in the ethanol synthesis pathway. Moreover, the studies on cofactor addition highlighted the importance of Mg+2, Zn+2, thiamine pyrophosphate, and NADP+ in ethanol synthesis. The yields of 3856 mg/L ethanol and 109.5 µg/108 cells exopolysaccharides were obtained in the engineered S. elongatus using a photo-bioreactor under optimized conditions. This enhanced production in ethanol and exopolysaccharides are attributed to the flux of carbon from glycogen synthesis pathway and proper availability of essential components.

6.
Int J Biol Macromol ; 144: 85-93, 2020 Feb 01.
Article En | MEDLINE | ID: mdl-31838064

Use of biomaterial scaffolds as drug carriers for infected wounds treatment is of wide scope. A series of curcumin/TiO2 complex loaded chitosan scaffolds are fabricated for the same. Synthesized wound dressing material is screened for their morphology, water absorption capacity; in vitro drug release patterns, in vitro antibacterial studies against gram +ve and a gram -ve bacteria, cell viability for 3T3-L1 cell lines as well as in vivo MRSA infected wound healing capability. Formation of curcumin/TiO2 complex was confirmed by X-ray diffraction studies, the anchoring pattern of them on the chitosan scaffold was analyzed by FESEM and EDS mapping. All membranes showed a better performance towards in vitro antibacterial and in vivo wound healing properties than the control ones in 14 days. The bacterial count on wound for a regular time period was measured and the scaffold with higher amount of curcumin in its complex is found to give the better performance, along with skin regeneration due to synergistic effect of curcumin and TiO2.


Chitosan/chemistry , Curcumin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Skin/microbiology , Textiles , Tissue Scaffolds/chemistry , Titanium/pharmacology , Wound Healing/drug effects , 3T3-L1 Cells , Animals , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Curcumin/chemistry , Drug Liberation , Male , Membranes, Artificial , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Microbial Sensitivity Tests , Rats, Sprague-Dawley , Skin/drug effects , Titanium/chemistry , Water , X-Ray Diffraction
7.
Article En | MEDLINE | ID: mdl-31275934

The ethanol synthesis pathway engineered Synechocystis sp. PCC 6803 (hereafter Synechocystis) was used to investigate the influence of metal oxide mediated extracellular NADPH regeneration on ethanol synthesis. The in-vitro studies proved that the metal oxides have the potential to generate the NADPH in the presence of electron donor, the usual components of photoautotrophic growth conditions. When the NADPH regeneration was applied in Synechocystsis, the strain showed improved growth and ethanol production. This improved ethanol synthesis is attributed to the increased availability of NADPH to the ethanol synthesis pathway and redirection of closely related carbon metabolism into the ethanol synthesis. Under optimized light intensity and NADP addition, the maximum ethanol production of 5,100 mg/L was observed in MgO mediated extracellular NADPH regeneration after 25 days of cultivation, which is 2-fold higher than the control. This study indicates the feasibility of metal oxide mediated extracellular NADPH regeneration of Synechocystis to increase the production of ethanol.

8.
Plant Cell Physiol ; 59(10): 2020-2029, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-29931091

The photoautotrophic Synechocystis sp. PCC 6803 (hereafter Synechocystis) is known for its α-polyglucan (glycogen) synthesis to serve as a carbon storage compound. In this study, the glgC- and glgA-overexpressing Synechocystis strain with the disruption of polyhydroxybutyrate (PHB) synthesis (▴GCAX-ΔBK) showed an increased glycogen production. This engineered strain had a high glycogen content of 38.3% (g g-1 dry cell weight) as compared with 27.4% in the phaA knockout strain (ΔBK) and 34.8% in the glgC/glgA-overexpressing strain (▴GCAX) after 20 d growth. Under nitrogen-deprived growth conditions for 3 d, the ▴GCAX-ΔBK strain showed a further increase in glycogen content from 27.0% to 36.0%. Furthermore, the engineered strains grown under ionic, osmotic or oxidative stress conditions had an increase of glycogen accumulation, whereas no increase was observed in the wild type. The maximum glycogen content was 54.0% in the ▴GCAX-ΔBK strain treated with 3 mM H2O2. The overall results indicated that in the absence of PHB synthesis, Synechocystis cells redirected the carbon flow towards the synthesis of glycogen as an alternative physiological responsive compound especially under stress conditions.


Glycogen/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology
9.
Bioresour Technol ; 112: 293-9, 2012 May.
Article En | MEDLINE | ID: mdl-22418083

Ultrasound-assisted alkaline pretreatment of sugarcane bagasse (SCB) for fermentable sugar production was carried out and the influence of particle size, liquid to solid ratio (LSR), NaOH concentration, temperature and sonication time on delignification and reducing sugar production was ascertained with Placket-Burman design. The best combination of each significant factor was determined by a central composite design (CCD) and optimum pretreatment conditions for maximum reducing sugar yield (96.27%) were particle size of 0.27 mm, LSR of 25 ml/g, NaOH concentration of 2.89% (w/v), temperature of 70.15°C and pretreatment time of 47.42 min. Under these conditions, 92.11% of theoretical reducing sugar yield was observed experimentally. The substantial reduction in pretreatment time and temperature with improved efficiency is the most attractive features of the ultrasound-assisted alkaline pretreatment.


Biotechnology/methods , Carbohydrates/biosynthesis , Cellulose/chemistry , Fermentation/drug effects , Saccharum/chemistry , Sodium Hydroxide/pharmacology , Ultrasonics/methods , Analysis of Variance , Carbohydrate Metabolism/drug effects , Lignin/metabolism , Regression Analysis
10.
Bioresour Technol ; 102(14): 7119-23, 2011 Jul.
Article En | MEDLINE | ID: mdl-21570831

In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.


Biofuels/analysis , Cellulose/chemistry , Ethanol/chemical synthesis , Saccharum/chemistry , Sulfuric Acids/pharmacology , Ultrasonics/methods , Alkalies/pharmacology , Catalysis/drug effects , Fermentation/drug effects , Hydrolysis/drug effects , Polysaccharides/chemistry , Time Factors , X-Ray Diffraction
...