Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38558970

RESUMEN

Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (pN) forces exerted by cells have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrins receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop a LR probe which is comprised of an engineered DNA structures that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN corresponding to hairpin unfolding and a high force threshold at 56 pN triggered through duplex shearing. These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live-cells. Automated analysis of tens of thousands of events from 8 cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 sec. A small subset of these events (<10%) mature in magnitude to >56pN with a median loading rate of 1.3 pNs-1 with these mechanical ramp events localizing at the periphery of the cell-substrate junction. Importantly, the LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of mechanotransduction.

2.
Nat Commun ; 15(1): 704, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267454

RESUMEN

The mechanical dysregulation of cells is associated with a number of disease states, that spans from fibrosis to tumorigenesis. Hence, it is highly desirable to develop strategies to deliver drugs based on the "mechanical phenotype" of a cell. To achieve this goal, we report the development of DNA mechanocapsules (DMC) comprised of DNA tetrahedrons that are force responsive. Modeling shows the trajectory of force-induced DMC rupture and predicts how applied force spatial position and orientation tunes the force-response threshold. DMCs functionalized with adhesion ligands mechanically denature in vitro as a result of cell receptor forces. DMCs are designed to encapsulate macromolecular cargos such as dextran and oligonucleotide drugs with minimal cargo leakage and high nuclease resistance. Force-induced release and uptake of DMC cargo is validated using flow cytometry. Finally, we demonstrate force-induced mRNA knockdown of HIF-1α in a manner that is dependent on the magnitude of cellular traction forces. These results show that DMCs can be effectively used to target biophysical phenotypes which may find useful applications in immunology and cancer biology.


Asunto(s)
ADN , Sistemas de Liberación de Medicamentos , Oligonucleótidos , Transporte Biológico , Biología
3.
Nat Methods ; 20(11): 1666-1671, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798479

RESUMEN

Flow cytometry is used routinely to measure single-cell gene expression by staining cells with fluorescent antibodies and nucleic acids. Here, we present tension-activated cell tagging (TaCT) to label cells fluorescently based on the magnitude of molecular force transmitted through cell adhesion receptors. As a proof-of-concept, we analyzed fibroblasts and mouse platelets after TaCT using conventional flow cytometry.


Asunto(s)
Citometría de Flujo , Animales , Ratones , Adhesión Celular
4.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503090

RESUMEN

The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signaling. The past decade has witnessed the development of molecular probes which have revealed many aspects of receptor mechanotransduction. However, most force probes are immobilized on hard substrates, thus failing to reveal mechanics in the physiological context of cell membranes. In this report, we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We demonstrate that TCR-antigen bonds experience 5-10 pN forces, and the mechanical events are dependent on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. We tethered DOTS onto a microparticle to mechanically screen antigen in high throughput using flow cytometry. Finally, DOTS were anchored onto live B cell membranes thus producing the first quantification of TCR mechanics at authentic immune cell-cell junctions.

5.
Sci Adv ; 8(8): eabg4485, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213231

RESUMEN

T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.

6.
J Am Chem Soc ; 141(48): 19038-19047, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31711285

RESUMEN

Nucleic acids and proteins are the fundamental biopolymers that support all life on Earth. Nucleic acids store large amounts of information in nucleobase sequences while peptides and proteins utilize diverse amino acid functional groups to adopt complex structures and perform wide-ranging activities. Although nature has evolved machinery to read the nucleic acid code and translate it into amino acid code, the extant biopolymers are restricted to encoding amino acid or nucleotide sequences separately, limiting their potential applications in medicine and biotechnology. Here we describe the design, synthesis, and stimuli-responsive assembly behavior of a bilingual biopolymer that integrates both amino acid and nucleobase sequences into a single peptide nucleic acid (PNA) scaffold to enable tunable storage and retrieval of tertiary structural behavior and programmable molecular recognition capabilities. Incorporation of a defined sequence of amino acid side-chains along the PNA backbone yields amphiphiles having a "protein code" that directs self-assembly into micellar architectures in aqueous conditions. However, these amphiphiles also carry a "nucleotide code" such that subsequent introduction of a complementary RNA strand induces a sequence-specific disruption of assemblies through hybridization. Together, these properties establish bilingual PNA as a powerful biopolymer that combines two information systems to harness structural responsiveness and sequence recognition. The PNA scaffold and our synthetic system are highly generalizable, enabling fabrication of a wide array of user-defined peptide and nucleotide sequence combinations for diverse future biomedical and nanotechnology applications.


Asunto(s)
Ácidos Nucleicos/genética , Ácidos Nucleicos de Péptidos/genética , Proteínas/genética , Secuencia de Bases , Código Genético , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Ácidos Nucleicos/síntesis química , Ácidos Nucleicos/química , Ácidos Nucleicos de Péptidos/síntesis química , Ácidos Nucleicos de Péptidos/química , Tensoactivos/síntesis química , Tensoactivos/química
7.
Org Biomol Chem ; 16(36): 6735-6740, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30187064

RESUMEN

The synthesis of nucleoside amino acid monomers and dimers has been carried out to evaluate and characterize the impact of the neutral amide backbone on key attributes like puckering of the sugar rings and glycosidic bond strengths of these analogs. The conformational analysis suggests that amide-linked nucleotides have a high predilection towards N-type conformers. The glycosidic bond strength was found to be slightly weaker compared to ribonucleosides under acidic conditions at high temperatures. The results will be helpful to explore in future the development of fully amide-linked oligonucleotides for therapeutic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...