Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
2.
Materials (Basel) ; 16(10)2023 May 20.
Article En | MEDLINE | ID: mdl-37241481

Probing the stress state using a high density of measurement points is time intensive and presents a limitation for what is experimentally feasible. Alternatively, individual strain fields used for determining stresses can be reconstructed from a subset of points using a Gaussian process regression (GPR). Results presented in this paper evidence that determining stresses from reconstructed strain fields is a viable approach for reducing the number of measurements needed to fully sample a component's stress state. The approach was demonstrated by reconstructing the stress fields in wire-arc additively manufactured walls fabricated using either a mild steel or low-temperature transition feedstock. Effects of errors in individual GP reconstructed strain maps and how these errors propagate to the final stress maps were assessed. Implications of the initial sampling approach and how localized strains affect convergence are explored to give guidance on how best to implement a dynamic sampling experiment.

3.
Appl Opt ; 61(6): C73-C79, 2022 Feb 20.
Article En | MEDLINE | ID: mdl-35201000

Tri-structural isotropic (TRISO) fuel particles are a key component of next generation nuclear fuels. Using x-ray computed tomography (CT) to characterize TRISO particles is challenging because of the strong attenuation of the x-ray beam by the uranium core, leading to severe photon starvation in a substantial fraction of the measurements. Furthermore, the overall acquisition time for a high-resolution CT scan can be very long when using conventional laboratory-based x-ray systems and reconstruction algorithms. Specifically, when analytic methods such as the Feldkamp-Davis-Kress (FDK) algorithm are used for reconstruction, it results in severe streak artifacts and noise in the corresponding 3D volume, which makes subsequent analysis of the particles challenging. In this paper, we develop and apply model-based image reconstruction (MBIR) algorithms to improve the quality of CT reconstructions for TRISO particles to facilitate better characterization. We demonstrate that the proposed MBIR algorithms can significantly suppress artifacts with minimal pre-processing compared to conventional approaches. We also demonstrate that the proposed MBIR approach can obtain high-quality reconstruction compared to the FDK approach even when using a fraction of the typically acquired measurements, thereby enabling dramatically faster measurement times for TRISO particles.

4.
J Imaging ; 7(1)2021 Jan 15.
Article En | MEDLINE | ID: mdl-34460581

Wavelength-resolved neutron tomography (WRNT) is an emerging technique for characterizing samples relevant to the materials sciences in 3D. WRNT studies can be carried out at beam lines in spallation neutron or reactor-based user facilities. Because of the limited availability of experimental time, potential imperfections in the neutron source, or constraints placed on the acquisition time by the type of sample, the data can be extremely noisy resulting in tomographic reconstructions with significant artifacts when standard reconstruction algorithms are used. Furthermore, making a full tomographic measurement even with a low signal-to-noise ratio can take several days, resulting in a long wait time before the user can receive feedback from the experiment when traditional acquisition protocols are used. In this paper, we propose an interlaced scanning technique and combine it with a model-based image reconstruction algorithm to produce high-quality WRNT reconstructions concurrent with the measurements being made. The interlaced scan is designed to acquire data so that successive measurements are more diverse in contrast to typical sequential scanning protocols. The model-based reconstruction algorithm combines a data-fidelity term with a regularization term to formulate the wavelength-resolved reconstruction as minimizing a high-dimensional cost-function. Using an experimental dataset of a magnetite sample acquired over a span of about two days, we demonstrate that our technique can produce high-quality reconstructions even during the experiment compared to traditional acquisition and reconstruction techniques. In summary, the combination of the proposed acquisition strategy with an advanced reconstruction algorithm provides a novel guideline for designing WRNT systems at user facilities.

5.
J Vis Exp ; (171)2021 05 07.
Article En | MEDLINE | ID: mdl-34028436

Neutrons have historically been used for a broad range of biological applications employing techniques such as small-angle neutron scattering, neutron spin echo, diffraction, and inelastic scattering. Unlike neutron scattering techniques that obtain information in reciprocal space, attenuation-based neutron imaging measures a signal in real space that is resolved on the order of tens of micrometers. The principle of neutron imaging follows the Beer-Lambert law and is based on the measurement of the bulk neutron attenuation through a sample. Greater attenuation is exhibited by some light elements (most notably, hydrogen), which are major components of biological samples. Contrast agents such as deuterium, gadolinium, or lithium compounds can be used to enhance contrast in a similar fashion as it is done in medical imaging, including techniques such as optical imaging, magnetic resonance imaging, X-ray, and positron emission tomography. For biological systems, neutron radiography and computed tomography have increasingly been used to investigate the complexity of the underground plant root network, its interaction with soils, and the dynamics of water flux in situ. Moreover, efforts to understand contrast details in animal samples, such as soft tissues and bones, have been explored. This manuscript focuses on the advances in neutron bioimaging such as sample preparation, instrumentation, data acquisition strategy, and data analysis using the High Flux Isotope Reactor CG-1D neutron imaging beamline. The aforementioned capabilities will be illustrated using a selection of examples in plant physiology (herbaceous plant/root/soil system) and biomedical applications (rat femur and mouse lung).


Laboratories , Neutron Diffraction , Animals , Isotopes , Mice , Neutrons , Tomography, X-Ray Computed
6.
J Struct Biol ; 206(2): 183-192, 2019 05 01.
Article En | MEDLINE | ID: mdl-30872095

Cryo-Electron Tomography (cryo-ET) has become an essential technique in revealing cellular and macromolecular assembly structures in their native states. However, due to radiation damage and the limited tilt range, cryo-ET suffers from low contrast and missing wedge artifacts, which limits the tomograms to low resolution and hinders further biological interpretation. In this study, we applied the Model-Based Iterative Reconstruction (MBIR) method to obtain tomographic 3D reconstructions of experimental cryo-ET datasets and demonstrated the advantages of MBIR in contrast improvement, missing wedge artifacts reduction, missing information restoration, and subtomogram averaging compared with other reconstruction approaches. Considering the outstanding reconstruction quality, MBIR has a great potential in the determination of high resolution biological structures with cryo-ET.


Electron Microscope Tomography/methods , Algorithms , Artifacts , Datasets as Topic , Reproducibility of Results
7.
J Synchrotron Radiat ; 25(Pt 4): 1261-1270, 2018 Jul 01.
Article En | MEDLINE | ID: mdl-29979189

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data. Xi-cam's plugin-based architecture targets cross-facility and cross-technique collaborative development, in support of multi-modal analysis. Xi-cam is open-source and cross-platform, and available for download on GitHub.

...