Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(17): 17148-17157, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37656004

RESUMEN

Ferroelectrics possess a spontaneous polarization that is switchable by an electric field and is critical for the development of low-energy nanoelectronics and neuromorphic applications. However, apart from a few recent developments, the realization of switchable polarization in metal oxides with simpler structures has been a major challenge. Here, we demonstrate the presence of robust switchable polarization at the level of a single nanocrystallite in magnesium-doped zinc oxide thin films with polar wurtzite crystal structures. Using a combination of high-resolution scanning probe microscopy and spectroscopic techniques, voltage control of the polarization and the coupled electronic transport behavior revealing a giant resistance change of approximately 10000% is unveiled. Time- and frequency-resolved nanoscale measurements provide key insights into the polarization phenomenon and a 9-fold increase in the effective longitudinal piezoelectric coefficient. Our work thus constitutes a crucial step toward validating nanoscale ferroelectricity in polar wurtzites for use in advanced nanoelectronics and memory applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA