RESUMEN
Apolipoprotein E4 (ApoE4) is thought to increase the risk of developing Alzheimer's disease. Several studies have shown that ApoE4-Amyloid ß (Aß) interactions can increment amyloid depositions in the brain and that this can be augmented at low pH values. On the other hand, experimental studies in transgenic mouse models have shown that treatment with enoxaparin significantly reduces cortical Aß levels, as well as decreases the number of activated astrocytes around Aß plaques. However, the interactions between enoxaparin and the ApoE4-Aß proteins have been poorly explored. In this work, we combine molecular dynamics simulations, molecular docking, and binding free energy calculations to elucidate the molecular properties of the ApoE4-Aß interactions and the competitive binding affinity of the enoxaparin on the ApoE4 binding sites. In addition, we investigated the effect of the environmental pH levels on those interactions. Our results showed that under different pH conditions, the closed form of the ApoE4 protein, in which the C-terminal domain folds into the protein, remains stabilized by a network of hydrogen bonds. This closed conformation allowed the generation of six different ApoE4-Aß interaction sites, which were energetically favorable. Systems at pH5 and 6 showed the highest energetic affinity. The enoxaparin molecule was found to have a strong energetic affinity for ApoE4-interacting sites and thus can neutralize or disrupt ApoE4-Aß complex formation.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Enoxaparina/farmacología , Concentración de Iones de Hidrógeno , Ratones , Simulación del Acoplamiento Molecular , Placa Amiloide/metabolismoRESUMEN
BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive impairment, tau protein deposits, and amyloid beta plaques. AD impacted 44 million people in 2016, and it is estimated to affect 100 million people by 2050. AD is disregarded as a pandemic compared with other diseases. To date, there is no effective treatment or diagnosis. OBJECTIVE: We aimed to discuss the current tools used to diagnose COVID-19, point out their potential to be adapted for AD diagnosis, and review the landscape of existing patents in the AD field and future perspectives for AD diagnosis. METHODS: We carried out a scientific screening following a research strategy in PubMed; Web of Science; the Derwent Innovation Index; the KCI-Korean Journal Database; Sci- ELO; the Russian Science Citation index; and the CDerwent, EDerwent, and MDerwent index databases. RESULTS: A total of 326 from 6,446 articles about AD and 376 from 4,595 articles about COVID-19 were analyzed. Of these, AD patents were focused on biomarkers and neuroimaging with no accurate, validated diagnostic methods, and only 7% of kit development patents were found. In comparison, COVID-19 patents were 60% about kit development for diagnosis; they are highly accurate and are now commercialized. CONCLUSION: AD is still neglected and not recognized as a pandemic that affects the people and economies of all nations. There is a gap in the development of AD diagnostic tools that could be filled if the interest and effort that has been invested in tackling the COVID-19 emergency could also be applied for innovation.
Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , Péptidos beta-Amiloides , Biomarcadores , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Humanos , Pandemias , Patentes como AsuntoRESUMEN
Here, we present a protocol to culture primary human vascular smooth muscle cells (VSMCs) under Alzheimer's disease (AD)-like conditions, including steps for morphological characterization with microscopy. We then describe functional assays, including wound healing, transwell, coculture, and supernatant assays, to evaluate the effect of dysfunctional VSMCs on the induction of the AD-associated microglial phenotype. Our approach can be applied to assess the effects of dysfunctional VSMCs on other cerebral cell lines including pericytes, astrocytes, and neurons under AD-like conditions in vitro. For complete details on the use and execution of this protocol, please refer to Aguilar-Pineda et al. (2021).
Asunto(s)
Enfermedad de Alzheimer , Músculo Liso Vascular , Enfermedad de Alzheimer/metabolismo , Encéfalo , Humanos , Miocitos del Músculo Liso , PericitosRESUMEN
Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further report that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly, estrogens can disrupt glycan-glycan interactions and glycan-protein interactions between the human ACE2 and the SARS-CoV-2 thereby blocking its entry into cells. In a mouse model of COVID-19, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.
Asunto(s)
Estrógenos/química , Estrógenos/metabolismo , SARS-CoV-2/química , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Transporte Biológico , COVID-19/metabolismo , Modelos Animales de Enfermedad , Estrógenos/farmacología , Glicosilación/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Polisacáridos/química , Polisacáridos/metabolismo , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tunicamicina/farmacología , Tratamiento Farmacológico de COVID-19RESUMEN
Despite the emerging evidence implying early vascular contributions to neurodegenerative syndromes, the role of vascular smooth muscle cells (VSMCs) in the pathogenesis of Alzheimer disease (AD) is still not well understood. Herein, we show that VSMCs in brains of patients with AD and animal models of the disease are deficient in multiple VSMC contractile markers which correlated with Tau accumulation in brain arterioles. Ex vivo and in vitro experiments demonstrated that VSMCs undergo dramatic phenotypic transitions under AD-like conditions, adopting pro-inflammatory phenotypes. Notably, these changes coincided with Tau hyperphosphorylation at residues Y18, T205, and S262. We also observed that VSMC dysfunction occurred in an age-dependent manner and that expression of Sm22α protein was inversely correlated with CD68 and Tau expression in brain arterioles of the 3xTg-AD and 5xFAD mice. Together, these findings further support the contribution of dysfunctional VSMCs in AD pathogenesis and nominate VSMCs as a potential therapeutic target in AD.
RESUMEN
ND1 subunit possesses the majority of the inhibitor binding domain of the human mitochondrial respiratory complex I. This is an attractive target for the search for new inhibitors that seek mitochondrial dysfunction. It is known, from in vitro experiments, that some metabolites from Annona muricata called acetogenins have important biological activities, such as anticancer, antiparasitic, and insecticide. Previous studies propose an inhibitory activity of bovine mitochondrial respiratory complex I by bis-tetrahydrofurans acetogenins such as annocatacin B, however, there are few studies on its inhibitory effect on human mitochondrial respiratory complex I. In this work, we evaluate the in silico molecular and energetic affinity of the annocatacin B molecule with the human ND1 subunit in order to elucidate its potential capacity to be a good inhibitor of this subunit. For this purpose, quantum mechanical optimizations, molecular dynamics simulations and the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis were performed. As a control to compare our outcomes, the molecule rotenone, which is a known mitochondrial respiratory complex I inhibitor, was chosen. Our results show that annocatacin B has a greater affinity for the ND1 structure, its size and folding were probably the main characteristics that contributed to stabilize the molecular complex. Furthermore, the MM/PBSA calculations showed a 35% stronger binding free energy compared to the rotenone complex. Detailed analysis of the binding free energy shows that the aliphatic chains of annocatacin B play a key role in molecular coupling by distributing favorable interactions throughout the major part of the ND1 structure. These results are consistent with experimental studies that mention that acetogenins may be good inhibitors of the mitochondrial respiratory complex I.
RESUMEN
BACKGROUND: The present systematic review and meta-analysis of diagnostic test accuracy summarizes the last three decades in advances on diagnosis of Alzheimer's disease (AD) in developed and developing countries. OBJECTIVE: To determine the accuracy of biomarkers in diagnostic tools in AD, for example, cerebrospinal fluid, positron emission tomography (PET), and magnetic resonance imaging (MRI), etc. METHODS: The authors searched PubMed for published studies from 1990 to April 2020 on AD diagnostic biomarkers. 84 published studies were pooled and analyzed in this meta-analysis and diagnostic accuracy was compared by summary receiver operating characteristic statistics. RESULTS: Overall, 84 studies met the criteria and were included in a meta-analysis. For EEG, the sensitivity ranged from 67 to 98%, with a median of 80%, 95% CI [75, 91], tau-PET diagnosis sensitivity ranged from 76 to 97%, with a median of 94%, 95% CI [76, 97]; and MRI sensitivity ranged from 41 to 99%, with a median of 84%, 95% CI [81, 87]. Our results showed that tau-PET diagnosis had higher performance as compared to other diagnostic methods in this meta-analysis. CONCLUSION: Our findings showed an important discrepancy in diagnostic data for AD between developed and developing countries, which can impact global prevalence estimation and management of AD. Also, our analysis found a better performance for the tau-PET diagnostic over other methods to diagnose AD patients, but the expense of tau-PET scan seems to be the limiting factor in the diagnosis of AD in developing countries such as those found in Asia, Africa, and Latin America.