Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Nat Cancer ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38816660

Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.

2.
J Funct Biomater ; 14(2)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36826852

A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.

3.
Chemistry ; 29(10): e202203014, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36333272

17 O NMR spectroscopy is a powerful technique, which can provide unique information regarding the structure and reactivity of biomolecules. However, the low natural abundance of 17 O (0.04 %) generally requires working with enriched samples, which are not easily accessible. Here, we present simple, fast and cost-efficient 17 O-enrichment strategies for amino acids and peptides by using mechanochemistry. First, five unprotected amino acids were enriched under ambient conditions, consuming only microliter amounts of costly labeled water, and producing pure molecules with enrichment levels up to ∼40 %, yields ∼60-85 %, and no loss of optical purity. Subsequently, 17 O-enriched Fmoc/tBu-protected amino acids were produced on a 1 g/day scale with high enrichment levels. Lastly, a site-selective 17 O-labeling of carboxylic functions in peptide side-chains was achieved for RGD and GRGDS peptides, with ∼28 % enrichment level. For all molecules, 17 O ssNMR spectra were recorded at 14.1 T in reasonable times, making this an important step forward for future NMR studies of biomolecules.


Amino Acids , Peptides , Amino Acids/chemistry , Peptides/chemistry , Amines , Magnetic Resonance Spectroscopy , Isotope Labeling/methods
4.
Elife ; 112022 03 21.
Article En | MEDLINE | ID: mdl-35311641

Staphylococcus aureus (SA) leukocidin ED (LukED) belongs to a family of bicomponent pore forming toxins that play important roles in SA immune evasion and nutrient acquisition. LukED targets specific G protein-coupled chemokine receptors to lyse human erythrocytes (red blood cells) and leukocytes (white blood cells). The first recognition step of receptors is critical for specific cell targeting and lysis. The structural and molecular bases for this mechanism are not well understood but could constitute essential information to guide antibiotic development. Here, we characterized the interaction of LukE with chemokine receptors ACKR1, CCR2, and CCR5 using a combination of structural, pharmacological, and computational approaches. First, crystal structures of LukE in complex with a small molecule mimicking sulfotyrosine side chain (p-cresyl sulfate) and with peptides containing sulfotyrosines issued from receptor sequences revealed the location of receptor sulfotyrosine binding sites in the toxins. Then, by combining previous and novel experimental data with protein docking, classical and accelerated weight histogram (AWH) molecular dynamics we propose models of the ACKR1-LukE and CCR5-LukE complexes. This work provides novel insights into chemokine receptor recognition by leukotoxins and suggests that the conserved sulfotyrosine binding pocket could be a target of choice for future drug development.


Staphylococcal Infections , Staphylococcus aureus , Humans , Immune Evasion , Leukocidins/metabolism , Receptors, Chemokine/metabolism , Receptors, G-Protein-Coupled/metabolism , Staphylococcus aureus/genetics
5.
Pharmaceutics ; 13(10)2021 Oct 06.
Article En | MEDLINE | ID: mdl-34683919

BACKGROUND AND PURPOSE: The activation of 5-HT4 receptors with agonists has emerged as a valuable therapeutic strategy to treat Alzheimer's disease (AD) by enhancing the nonamyloidogenic pathway. Here, the potential therapeutic effects of tegaserod, an effective agent for irritable bowel syndrome, were assessed for AD treatment. To envisage its efficient repurposing, tegaserod-loaded nanoemulsions were developed and functionalized by a blood-brain barrier shuttle peptide. RESULTS: The butyrylcholinesterase inhibitory activity of tegaserod and its neuroprotective cellular effects were highlighted, confirming the interest of this pleiotropic drug for AD treatment. In regard to its drugability profile, and in order to limit its peripheral distribution after IV administration, its encapsulation into monodisperse lipid nanoemulsions (Tg-NEs) of about 50 nm, and with neutral zeta potential characteristics, was performed. The stability of the formulation in stock conditions at 4 °C and in blood biomimetic medium was established. The adsorption on Tg-NEs of peptide-22 was realized. The functionalized NEs were characterized by chromatographic methods (SEC and C18/HPLC) and isothermal titration calorimetry, attesting the efficiency of the adsorption. From in vitro assays, these nanocarriers appeared suitable for enabling tegaserod controlled release without hemolytic properties. CONCLUSION: The developed peptide-22 functionalized Tg-NEs appear as a valuable tool to allow exploration of the repurposed tegaserod in AD treatment in further preclinical studies.

6.
J Med Chem ; 64(15): 10834-10848, 2021 08 12.
Article En | MEDLINE | ID: mdl-34266235

Proprotein convertase subtilisin/kexin type 9 (PCSK9), identified as a regulator of low-density lipoprotein receptor (LDLR), plays a major role in cardiovascular diseases (CVD). Recently, Pep2-8, a small peptide with discrete three-dimensional structure, was found to inhibit the PCSK9/LDLR interaction. In this paper, we describe the modification of this peptide using stapled peptide and SIP technologies. Their combination yielded potent compounds such as 18 that potently inhibited the binding of PCSK9 to LDLR (KD = 6 ± 1 nM) and restored in vitro LDL uptake by HepG2 cells in the presence of PCSK9 (EC50 = 175 ± 40 nM). The three-dimensional structures of key peptides were extensively studied by circular dichroism and nuclear magnetic resonance, and molecular dynamics simulations allowed us to compare their binding mode to tentatively rationalize structure-activity relationships (SAR).


Lysine/pharmacology , PCSK9 Inhibitors , Peptides/pharmacology , Serine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Lysine/chemistry , Models, Molecular , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Proprotein Convertase 9/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
7.
Mol Cancer Ther ; 18(8): 1386-1395, 2019 08.
Article En | MEDLINE | ID: mdl-31092563

Differently from cytotoxic chemotherapies, targeted therapies do not necessarily drive cancer cells toward death, but reduce cell proliferation, angiogenesis, and/or prevent metastasis without affecting healthy cells. Oncogenic proteins that are hyperactivated and/or overexpressed in cancer cells are prime targets for such therapies. On the other hand, the activity of tumor suppressor proteins is more difficult to harness. Here, we identified a short SOX9 sequence (S9pep) located at the hinge between the HMG DNA-binding domain and the SOX-E central conserved domain that mimics SOX9 tumor-suppressive properties. Doxycycline-induced S9pep expression in DLD-1 colorectal cancer cells inhibited the growth potential of these cells, including colorectal cancer stem cells, restored cell-cell contact inhibition, and inhibited the activity of the oncogenic Wnt/ß-catenin signaling pathway. It also significantly decreased tumor growth in BALB/cAnNCrl mice grafted with mouse doxycycline-inducible CT26 colorectal cancer cells in which S9pep was induced by treating them with doxycycline. As the Wnt/ß-catenin signaling pathway is constitutively activated in 80% of colorectal cancer and SOX9-inactivating mutations are present in up to 11% of colorectal cancer, S9pep could be a promising starting point for the development of a peptide-based therapeutic approach to restore a SOX9-like tumor suppressor function in colorectal cancer.


Biological Mimicry , Peptides/pharmacology , SOX9 Transcription Factor/chemistry , SOX9 Transcription Factor/metabolism , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Peptides/chemistry , Proto-Oncogene Proteins c-myc , Spheroids, Cellular , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Front Pharmacol ; 9: 1274, 2018.
Article En | MEDLINE | ID: mdl-30542281

TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood-brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10-120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body.

9.
Front Pharmacol ; 9: 1386, 2018.
Article En | MEDLINE | ID: mdl-30542288

TLQP-21 is a neuropeptide which has been implicated in regulation of nociception and other relevant physiologic functions. Although recent studies identified C3a and gC1q receptors as targets for TLQP-21, its intracellular molecular mechanisms of action remain largely unidentified. Our aim was (i) to explore the intracellular signaling pathway(s) activated by JMV5656, a novel derivative of TLQP-21, in RAW264.7 macrophages, and (ii) to assess linkages of these pathways with its purported receptors. JMV5656 stimulated, in a dose-dependent fashion, a rapid and transient increase in intracellular Ca2+ concentrations in RAW264.7 cells; repeated exposure to the peptide resulted in a lower response, suggesting a possible desensitization mechanism of the receptor. In particular, JMV5656 increased cytoplasmic Ca2+ levels by a PLC-dependent release of Ca2+ from the endoplasmic reticulum. STIM proteins and Orai Ca2+ channels were activated and played a crucial role. In fact, treatment of the cells with U73122 and thapsigargin modulated the increase of intracellular Ca2+ levels stimulated by JMV5656. Moreover, in RAW264.7 cells intracellular Ca2+ increases did not occur through the binding of JMV5656 to the C3a receptor, since the increase of intracellular Ca2+ levels induced by JMV5656 was not affected by specific siRNA against C3aR. In summary, our study provides new indications for the downstream effects of JMV5656 in macrophages, suggesting that it could activate receptors different from the C3aR.

10.
J Mater Chem B ; 6(12): 1782-1790, 2018 Mar 28.
Article En | MEDLINE | ID: mdl-32254250

Relying on a membrane-disturbing mechanism of action and not on any intracellular target, antimicrobial peptides (AMP) are attractive compounds to be grafted on the surface of implantable materials such as silicone catheters or titanium surgical implants. AMP sequences often display numerous reactive functions (e.g. amine, carboxylic acid) on their side chains and straightforward conjugation chemistries could lead to uncontrolled covalent grafting, random orientation, and non-homogenous density. To achieve an easy and site specific covalent attachment of unprotected peptides on titanium surfaces, we designed hybrid silylated biomolecules based on the temporin-SHa amphipathic helical antimicrobial sequence. With the grafting reaction being chemoselective, we designed five analogues displaying the silane anchoring function at the N-ter, C-ter or at different positions inside the sequence to get an accurate control of the orientation. Grafting density calculations were performed by XPS and the influence of the orientation of the peptide on the surface was clearly demonstrated by the measure of antimicrobial activity. Temporin amphipathic helices are described to permeabilize the bacterial membrane by interacting in a parallel orientation with it. Our results move in the direction of this mechanism as the selective grafting of hybrid temporin 2 through a lysine placed at the center of the peptide sequence, resulted in better biofilm growth inhibition of E. coli and S. epidermis than substrates in which temporins were grafted via their C- or N-terminus.

12.
Front Pharmacol ; 8: 167, 2017.
Article En | MEDLINE | ID: mdl-28424618

VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity of Kd = 0.55 ± 0.05 × 10-9 M and Bmax = 81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3 and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+ from the endoplasmic reticulum followed by a slower store-operated Ca2+ entry from outside the cell.

13.
Front Cell Neurosci ; 11: 41, 2017.
Article En | MEDLINE | ID: mdl-28280458

TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels.

14.
Mol Ther ; 25(2): 534-546, 2017 02 01.
Article En | MEDLINE | ID: mdl-28153100

Melanoma is a highly metastatic and deadly form of cancer. Invasive melanoma cells overexpress integrin αvß3, which is a well-known target for Arg-Gly-Asp-based (RGD) peptides. We developed a sophisticated method to synthetize milligram amounts of a targeted vector that allows the RGD-mediated targeting, internalization, and release of a mitochondria-disruptive peptide derived from the pro-apoptotic Bax protein. We found that 2.5 µM Bax[109-127] was sufficient to destabilize the mitochondria in ten different tumor cell lines, even in the presence of the anti-apoptotic Bcl2 protein, which is often involved in tumor resistance. This pore-forming peptide displayed antitumor activity when it was covalently linked by a disulfide bridge to the tetrameric RAFT-c[RGD]4-platform and after intravenous injection in a human melanoma tumor model established in humanized immuno-competent mice. In addition to its direct toxic effect, treatment with this combination induced the release of the immuno-stimulating factor monocyte chimoattractant protein 1 (MCP1) in the blood and a decrease in the level of the pro-angiogenic factor FGF2. Our novel multifunctional, apoptosis-inducing agent could be further customized and assayed for potential use in tumor-targeted therapy.


Melanoma/metabolism , Melanoma/pathology , Peptide Fragments/pharmacology , bcl-2-Associated X Protein/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Melanoma/drug therapy , Mice , Mice, Knockout , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Peptide Fragments/administration & dosage , Peptide Fragments/chemical synthesis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
Beilstein J Org Chem ; 13: 2087-2093, 2017.
Article En | MEDLINE | ID: mdl-33613776

While presenting particularly interesting advantages, peptide synthesis by ball-milling was never compared to the two traditional strategies, namely peptide syntheses in solution and on solid support (solid-phase peptide synthesis, SPPS). In this study, the challenging VVIA tetrapeptide was synthesized by ball-milling, in solution, and on solid support. The three strategies were then compared in terms of yield, purity, reaction time and environmental impact. The results obtained enabled to draw some strengths and weaknesses of each strategy, and to foresee what will have to be implemented to build more efficient and sustainable peptide syntheses in the near future.

16.
J Pept Sci ; 22(3): 143-8, 2016 Mar.
Article En | MEDLINE | ID: mdl-26785930

The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.


Amides/chemistry , Peptide Fragments/chemistry , Peptides, Cyclic/chemical synthesis , Protons , Serine/chemistry , Acylation , Aspartic Acid/chemistry , Carboxylic Acids/chemistry , Fluorenes/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions
17.
J Biol Chem ; 290(45): 27021-27039, 2015 Nov 06.
Article En | MEDLINE | ID: mdl-26363071

The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides ß-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger ß-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.


Receptors, Ghrelin/agonists , Receptors, Ghrelin/antagonists & inhibitors , Arrestins/metabolism , Drug Design , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Inositol Phosphates/biosynthesis , Kinetics , Ligands , MAP Kinase Signaling System , Receptors, Ghrelin/metabolism , Signal Transduction , Structure-Activity Relationship , beta-Arrestins
18.
Cell Metab ; 22(4): 646-57, 2015 Oct 06.
Article En | MEDLINE | ID: mdl-26278050

Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling.


Agouti-Related Protein/genetics , Neurons/metabolism , Agouti-Related Protein/deficiency , Animals , Dopamine/metabolism , Eating , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Signal Transduction
19.
Chem Biol Drug Des ; 86(4): 697-703, 2015 Oct.
Article En | MEDLINE | ID: mdl-25684690

A series of arylpiperazinylbutyl derivatives of 4,5-dihydro-1,2,4-triazine-6(1H)-ones was designed and synthesized according to the new solid-supported methodology. In this approach, triazinone scaffold was constructed from the Fmoc-protected glycine. The library representatives showed different levels of affinity for 5-HT7 and 5-HT1A receptors; compounds 13, 14 and 18-20 were classified as dual 5-HT7 /5-HT1A receptors ligands. The structure-affinity relationship analysis revealed that the receptor affinity and selectivity of the tested compounds depended on the kind of substituent in position 3 of triazinone fragment as well as substitution pattern of the phenylpiperazine moiety.


Ligands , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Solid-Phase Synthesis Techniques , Structure-Activity Relationship , Piperazines/chemistry , Radioligand Assay/methods , Triazines/chemistry
20.
J Proteomics ; 108: 369-72, 2014 Aug 28.
Article En | MEDLINE | ID: mdl-24937263

The detection of post-translational modifications (PTMs) of proteins is a matter of intensive research. Among all possible pitfalls that may lead to misidentifications, the chemical stability of modified peptides is scarcely questioned. Global proteomic studies devoted to protein acetylation are becoming popular. Thus, we were concerned about the intrinsic stability of O-acetylated peptides because of the O-N acyl transfer reactivity occurring when an amino moiety is present in the vicinity of the acylated hydroxyl group. Here, the behavior of isomeric O- and N-acetylated, N-terminal threonine-containing peptides was explored in a standard proteomic workflow. We demonstrated a strong chemical instability of O-acetylation, which prevents its detection.


Protein Processing, Post-Translational , Proteins/chemistry , Proteomics/methods , Threonine/chemistry , Acetylation , Proteins/analysis , Proteins/metabolism , Threonine/analysis
...