Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Global Biogeochem Cycles ; 36(3): e2021GB007162, 2022 Mar.
Article En | MEDLINE | ID: mdl-35865754

The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year-1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year-1) and biological processes are the largest loss (8.6 Pg C year-1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.

2.
Glob Chang Biol ; 27(22): 5773-5785, 2021 11.
Article En | MEDLINE | ID: mdl-34386992

Ocean circulation connects geographically distinct ecosystems across a wide range of spatial and temporal scales via exchanges of physical and biogeochemical properties. Remote oceanographic processes can be especially important for ecosystems in the Southern Ocean, where the Antarctic Circumpolar Current transports properties across ocean basins through both advection and mixing. Recent tracking studies have indicated the existence of two large-scale, open ocean habitats in the Southern Ocean used by grey petrels (Procellaria cinerea) from two populations (i.e., Kerguelen and Antipodes islands) during their nonbreeding season for extended periods during austral summer (i.e., October to February). In this work, we use a novel combination of large-scale oceanographic observations, surface drifter data, satellite-derived primary productivity, numerical adjoint sensitivity experiments, and output from a biogeochemical state estimate to examine local and remote influences on these grey petrel habitats. Our aim is to understand the oceanographic features that control these isolated foraging areas and to evaluate their ecological value as oligotrophic open ocean habitats. We estimate the minimum local primary productivity required to support these populations to be much <1% of the estimated local primary productivity. The region in the southeast Indian Ocean used by the birds from Kerguelen is connected by circulation to the productive Kerguelen shelf. In contrast, the region in the south-central Pacific Ocean used by seabirds from the Antipodes is relatively isolated suggesting it is more influenced by local factors or the cumulative effects of many seasonal cycles. This work exemplifies the potential use of predator distributions and oceanographic data to highlight areas of the open ocean that may be more dynamic and productive than previously thought. Our results highlight the need to consider advective connections between ecosystems in the Southern Ocean and to re-evaluate the ecological relevance of oligotrophic Southern Ocean regions from a conservation perspective.


Birds , Ecosystem , Animals , Antarctic Regions , Indian Ocean , Seasons
3.
J Theor Biol ; 262(1): 116-28, 2010 Jan 07.
Article En | MEDLINE | ID: mdl-19765596

Intraguild predation (IGP) is a widespread ecological phenomenon in which two consumers that share a resource also engage in a predator-prey interaction. Theory on IGP predicts the occurrence of alternative stable states, but empirical evidence of such states is scarce. This raises the question of whether alternative states are a rare phenomenon that is unlikely to be observed in nature. Here we analyze a model in which the resource exhibits logistic or chemostat dynamics and consumers have saturating (Type II) functional responses. We show that alternative states can arise for a wide range of biological scenarios and that environmental constraints can make their detection difficult. Our analysis identifies three possible combinations of alternative states: (i) IG prey or IG predator, (ii) coexistence or IG predator, and (iii) coexistence or IG prey. Bifurcation diagrams reveal that alternative states are possible over large regions of the parameter space. However, they can be limited to narrow ranges along the resource productivity axis, which may make it difficult to observe the occurrence of alternative states in communities with IGP. Microcosm experiments provide a promising avenue for detecting combinations of asymptotically stable states along a productivity gradient.


Food Chain , Predatory Behavior/physiology , Adaptation, Biological/physiology , Animal Migration/physiology , Animals , Arthropods/physiology , Competitive Behavior/physiology , Computer Simulation , Dominance-Subordination , Efficiency , Fishes/physiology , Food Supply , Host-Parasite Interactions/physiology , Insecta/parasitology , Insecta/physiology , Mammals/physiology , Models, Theoretical
4.
Bull Math Biol ; 70(6): 1634-59, 2008 Aug.
Article En | MEDLINE | ID: mdl-18404289

Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.


Ecosystem , Models, Biological , Algorithms , Animals , Biomass , Food Chain , Population Dynamics , Predatory Behavior
...