Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201565

RESUMEN

The TRESK (K2P18.1, KCNK18) background potassium channel is expressed in primary sensory neurons and has been reported to contribute to the regulation of pain sensations. In the present study, we examined the interaction of TRESK with NDFIP1 (Nedd4 family-interacting protein 1) in the Xenopus oocyte expression system by two-electrode voltage clamp and biochemical methods. We showed that the coexpression of NDFIP1 abolished the TRESK current under the condition where the other K+ channels were not affected. Mutations in the three PPxY motifs of NDFIP1, which are responsible for the interaction with the Nedd4 ubiquitin ligase, prevented a reduction in the TRESK current. Furthermore, the overexpression of a dominant-negative Nedd4 construct in the oocytes coexpressing TRESK with NDFIP1 partially reversed the down-modulating effect of the adaptor protein on the K+ current. The biochemical data were also consistent with the functional results. An interaction between epitope-tagged versions of TRESK and NDFIP1 was verified by co-immunoprecipitation experiments. The coexpression of NDFIP1 with TRESK induced the ubiquitination of the channel protein. Altogether, the results suggest that TRESK is directly controlled by and highly sensitive to the activation of the NDFIP1-Nedd4 system. The NDFIP1-mediated reduction in the TRESK component may induce depolarization, increase excitability, and attenuate the calcium dependence of the membrane potential by reducing the calcineurin-activated fraction in the ensemble background K+ current.


Asunto(s)
Proteínas Portadoras , Oocitos , Canales de Potasio , Ubiquitinación , Animales , Canales de Potasio/metabolismo , Canales de Potasio/genética , Oocitos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Xenopus laevis , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Unión Proteica , Potasio/metabolismo , Proteínas de Xenopus
2.
J Biol Chem ; 299(6): 104737, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084812

RESUMEN

TRESK (K2P18.1) possesses unique structural proportions within the K2P background potassium channel family. The previously described TRESK regulatory mechanisms are based on the long intracellular loop between the second and the third transmembrane segments (TMS). However, the functional significance of the exceptionally short intracellular C-terminal region (iCtr) following the fourth TMS has not yet been examined. In the present study, we investigated TRESK constructs modified at the iCtr by two-electrode voltage clamp and the newly developed epithelial sodium current ratio (ENaR) method in Xenopus oocytes. The ENaR method allowed the evaluation of channel activity by exclusively using electrophysiology and provided data that are otherwise not readily available under whole-cell conditions. TRESK homodimer was connected with two ENaC (epithelial Na+ channel) heterotrimers, and the Na+ current was measured as an internal reference, proportional to the number of channels in the plasma membrane. Modifications of TRESK iCtr resulted in diverse functional effects, indicating a complex contribution of this region to K+ channel activity. Mutations of positive residues in proximal iCtr locked TRESK in low activity, calcineurin-insensitive state, although this phosphatase binds to distant motifs in the loop region. Accordingly, mutations in proximal iCtr may prevent the transmission of modulation to the gating machinery. Replacing distal iCtr with a sequence designed to interact with the inner surface of the plasma membrane increased the activity of the channel to unprecedented levels, as indicated by ENaR and single channel measurements. In conclusion, the distal iCtr is a major positive determinant of TRESK function.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Membrana Celular , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Mutación , Oocitos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Xenopus
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638858

RESUMEN

TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson's disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Hidrazonas/farmacología , Lisosomas/metabolismo , Naftoles/farmacología , Canales de Potasio/metabolismo , 4-Aminopiridina/farmacología , Animales , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Microscopía Confocal/métodos , Oocitos/citología , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/genética , Transporte de Proteínas/efectos de los fármacos , Xenopus laevis
4.
PLoS One ; 9(5): e97854, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830385

RESUMEN

The cytoplasmic loop between the second and third transmembrane segments is pivotal in the regulation of TRESK (TWIK-related spinal cord K+ channel, K2P18.1, KCNK18). Calcineurin binds to this region and activates the channel by dephosphorylation in response to the calcium signal. Phosphorylation-dependent anchorage of 14-3-3 adaptor protein also modulates TRESK at this location. In the present study, we identified molecular interacting partners of the intracellular loop. By an affinity chromatography approach using the cytoplasmic loop as bait, we have verified the specific association of calcineurin and 14-3-3 to the channel. In addition to these known interacting proteins, we observed substantial binding of tubulin to the intracellular loop. Successive truncation of the polypeptide and pull-down experiments from mouse brain cytosol narrowed down the region sufficient for the binding of tubulin to a 16 amino acid sequence: LVLGRLSYSIISNLDE. The first six residues of this sequence are similar to the previously reported tubulin-binding region of P2X2 purinergic receptor. The tubulin-binding site of TRESK is located close to the protein kinase A (PKA)-dependent 14-3-3-docking motif of the channel. We provide experimental evidence suggesting that 14-3-3 competes with tubulin for the binding to the cytoplasmic loop of TRESK. It is intriguing that the 16 amino acid tubulin-binding sequence includes the serines, which were previously shown to be phosphorylated by microtubule-affinity regulating kinases (MARK kinases) and contribute to channel inhibition. Although tubulin binds to TRESK in vitro, it remains to be established whether the two proteins also interact in the living cell.


Asunto(s)
Canales de Potasio/química , Tubulina (Proteína)/química , Proteínas 14-3-3/química , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Unión Competitiva , Calcineurina/química , Pollos , Cromatografía de Afinidad , Humanos , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Pez Cebra , Proteínas de Pez Cebra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA