Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13749, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877012

RESUMEN

Prion diseases are fatal, infectious, neurodegenerative disorders resulting from accumulation of misfolded cellular prion protein in the brain. Early pathological changes during CNS prion disease also include reactive astrocyte activation with increased CD44 expression, microgliosis, as well as loss of dendritic spines and synapses. CD44 is a multifunctional cell surface adhesion and signalling molecule which is considered to play roles in astrocyte morphology and the maintenance of dendritic spine integrity and synaptic plasticity. However, the role of CD44 in prion disease was unknown. Here we used mice deficient in CD44 to determine the role of CD44 during prion disease. We show that CD44-deficient mice displayed no difference in their response to CNS prion infection when compared to wild type mice. Furthermore, the reactive astrocyte activation and microgliosis that accompanies CNS prion infection was unimpaired in the absence of CD44. Together, our data show that although CD44 expression is upregulated in reactive astrocytes during CNS prion disease, it is dispensable for astrocyte and microglial activation and the development of prion neuropathogenesis.


Asunto(s)
Astrocitos , Receptores de Hialuranos , Enfermedades por Prión , Animales , Astrocitos/metabolismo , Astrocitos/patología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Enfermedades por Prión/genética , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Encéfalo/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BL
2.
Nat Commun ; 13(1): 3236, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688821

RESUMEN

Dysregulated protein synthesis is a core pathogenic mechanism in Fragile X Syndrome (FX). The mGluR Theory of FX predicts that pathological synaptic changes arise from the excessive translation of mRNAs downstream of mGlu1/5 activation. Here, we use a combination of CA1 pyramidal neuron-specific TRAP-seq and proteomics to identify the overtranslating mRNAs supporting exaggerated mGlu1/5 -induced long-term synaptic depression (mGluR-LTD) in the FX mouse model (Fmr1-/y). Our results identify a significant increase in the translation of ribosomal proteins (RPs) upon mGlu1/5 stimulation that coincides with a reduced translation of long mRNAs encoding synaptic proteins. These changes are mimicked and occluded in Fmr1-/y neurons. Inhibiting RP translation significantly impairs mGluR-LTD and prevents the length-dependent shift in the translating population. Together, these results suggest that pathological changes in FX result from a length-dependent alteration in the translating population that is supported by excessive RP translation.


Asunto(s)
Síndrome del Cromosoma X Frágil , Receptores de Glutamato Metabotrópico , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
3.
Life Sci Alliance ; 4(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33563652

RESUMEN

Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Neuroprotección , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Frío , Glicoproteínas de Membrana/agonistas , Ratones , Fosforilación , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Priones/metabolismo , Unión Proteica , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura
4.
Sci Signal ; 13(644)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788341

RESUMEN

Chronic activation of the unfolded protein response (UPR), notably the branch comprising the kinase PERK and the translation initiation factor eIF2α, is a pathological feature of many neurodegenerative diseases caused by protein misfolding. Partial reduction of UPR signaling at the level of phosphorylated eIF2α is neuroprotective and avoids the pancreatic toxicity caused by full inhibition of PERK kinase activity. However, other stress pathways besides the UPR converge on phosphorylated eIF2α in the integrated stress response (ISR), which is critical to normal cellular function. We explored whether partial inhibition of PERK signaling may be a better therapeutic option. PERK-mediated phosphorylation of eIF2α requires its binding to the insert loop within PERK's kinase domain, which is, itself, phosphorylated at multiple sites. We found that, as expected, Akt mediates the phosphorylation of Thr799 in PERK. This phosphorylation event reduced eIF2α binding to PERK and selectively attenuated downstream signaling independently of PERK activity and the broader ISR. Induction of Thr799 phosphorylation with a small-molecule activator of Akt similarly reduced PERK signaling and increased both neuronal and animal survival without measurable pancreatic toxicity in a mouse model of prion disease. Thus, promoting PERK phosphorylation at Thr799 to partially down-regulate PERK-eIF2α signaling while avoiding widespread ISR inhibition may be a safe therapeutic approach in neurodegenerative disease.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Enfermedades por Prión/metabolismo , Transducción de Señal , eIF-2 Quinasa/metabolismo , Acetatos/farmacología , Animales , Benzopiranos/farmacología , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Ratones , Fosforilación/efectos de los fármacos , Enfermedades por Prión/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos
5.
Neuron ; 105(5): 855-866.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924446

RESUMEN

Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection.


Asunto(s)
Astrocitos/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades por Prión/metabolismo , Sinapsis/metabolismo , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Memoria , Ratones , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Tapsigargina/farmacología , Transcriptoma , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Brain ; 140(6): 1768-1783, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430857

RESUMEN

See Mercado and Hetz (doi:10.1093/brain/awx107) for a scientific commentary on this article.Signalling through the PERK/eIF2α-P branch of the unfolded protein response plays a critical role in controlling protein synthesis rates in cells. This pathway is overactivated in brains of patients with Alzheimer’s disease and related disorders and has recently emerged as a promising therapeutic target for these currently untreatable conditions. Thus, in mouse models of neurodegenerative disease, prolonged overactivation of PERK/eIF2α-P signalling causes sustained attenuation of protein synthesis, leading to memory impairment and neuronal loss. Re-establishing translation rates by inhibition of eIF2α-P activity, genetically or pharmacologically, restores memory and prevents neurodegeneration and extends survival. However, the experimental compounds used preclinically are unsuitable for use in humans, due to associated toxicity or poor pharmacokinetic properties. To discover compounds that have anti-eIF2α-P activity suitable for clinical use, we performed phenotypic screens on a NINDS small molecule library of 1040 drugs. We identified two compounds, trazodone hydrochloride and dibenzoylmethane, which reversed eIF2α-P-mediated translational attenuation in vitro and in vivo. Both drugs were markedly neuroprotective in two mouse models of neurodegeneration, using clinically relevant doses over a prolonged period of time, without systemic toxicity. Thus, in prion-diseased mice, both trazodone and dibenzoylmethane treatment restored memory deficits, abrogated development of neurological signs, prevented neurodegeneration and significantly prolonged survival. In tauopathy-frontotemporal dementia mice, both drugs were neuroprotective, rescued memory deficits and reduced hippocampal atrophy. Further, trazodone reduced p-tau burden. These compounds therefore represent potential new disease-modifying treatments for dementia. Trazodone in particular, a licensed drug, should now be tested in clinical trials in patients.


Asunto(s)
Chalconas/farmacología , Demencia Frontotemporal/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedades por Prión/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Trazodona/farmacología , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Conducta Animal , Chalconas/administración & dosificación , Modelos Animales de Enfermedad , Demencia Frontotemporal/complicaciones , Trastornos de la Memoria/etiología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Enfermedades por Prión/complicaciones , Inhibidores de Proteínas Quinasas/administración & dosificación , Trazodona/administración & dosificación , Respuesta de Proteína Desplegada
7.
J Clin Invest ; 127(2): 487-499, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27991860

RESUMEN

The current frontline symptomatic treatment for Alzheimer's disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR-selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Enfermedades por Prión/tratamiento farmacológico , Quinolinas/farmacología , Receptor Muscarínico M1/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Hipocampo/fisiopatología , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Receptor Muscarínico M1/genética
8.
Acta Neuropathol ; 130(5): 633-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26450683

RESUMEN

The PERK-eIF2α branch of the Unfolded Protein Response (UPR) mediates the transient shutdown of translation in response to rising levels of misfolded proteins in the endoplasmic reticulum. PERK and eIF2α activation are increasingly recognised in postmortem analyses of patients with neurodegenerative disorders, including Alzheimer's disease, the tauopathies and prion disorders. These are all characterised by the accumulation of misfolded disease-specific proteins in the brain in association with specific patterns of neuronal loss, but the role of UPR activation in their pathogenesis is unclear. In prion-diseased mice, overactivation of PERK-P/eIF2α-P signalling results in the sustained reduction in global protein synthesis, leading to synaptic failure, neuronal loss and clinical disease. Critically, restoring vital neuronal protein synthesis rates by inhibiting the PERK-eIF2α pathway, both genetically and pharmacologically, prevents prion neurodegeneration downstream of misfolded prion protein accumulation. Here we show that PERK-eIF2α-mediated translational failure is a key process leading to neuronal loss in a mouse model of frontotemporal dementia, where the misfolded protein is a form of mutant tau. rTg4510 mice, which overexpress the P301L tau mutation, show dysregulated PERK signalling and sustained repression of protein synthesis by 6 months of age, associated with onset of neurodegeneration. Treatment with the PERK inhibitor, GSK2606414, from this time point in mutant tau-expressing mice restores protein synthesis rates, protecting against further neuronal loss, reducing brain atrophy and abrogating the appearance of clinical signs. Further, we show that PERK-eIF2α activation also contributes to the pathological phosphorylation of tau in rTg4510 mice, and that levels of phospho-tau are lowered by PERK inhibitor treatment, providing a second mechanism of protection. The data support UPR-mediated translational failure as a generic pathogenic mechanism in protein-misfolding disorders, including tauopathies, that can be successfully targeted for prevention of neurodegeneration.


Asunto(s)
Adenina/análogos & derivados , Demencia Frontotemporal/tratamiento farmacológico , Indoles/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , eIF-2 Quinasa/antagonistas & inhibidores , Proteínas tau/metabolismo , Adenina/farmacología , Animales , Atrofia , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/enzimología , Demencia Frontotemporal/patología , Humanos , Masculino , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Mutación , Neuronas/enzimología , Neuronas/patología , Tamaño de los Órganos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Proteínas tau/genética
9.
Nature ; 518(7538): 236-9, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25607368

RESUMEN

In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity. Reduction in synapse number is a consistent early feature of neurodegenerative diseases, suggesting deficient compensatory mechanisms. Although much is known about toxic processes leading to synaptic dysfunction and loss in these disorders, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number of cold-shock proteins in the brain, including the RNA binding protein, RBM3 (ref. 6). The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5XFAD (Alzheimer-type) mice, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. RBM3 overexpression, achieved either by boosting endogenous levels through hypothermia before the loss of the RBM3 response or by lentiviral delivery, resulted in sustained synaptic protection in 5XFAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold-shock pathways as potential protective therapies in neurodegenerative disorders.


Asunto(s)
Frío , Respuesta al Choque por Frío/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal , Fármacos Neuroprotectores , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Proteínas y Péptidos de Choque por Frío/metabolismo , Modelos Animales de Enfermedad , Hibernación/fisiología , Hipocampo/metabolismo , Masculino , Ratones , Priones/fisiología , Proteínas de Unión al ARN/genética , Regeneración
10.
Sci Transl Med ; 5(206): 206ra138, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107777

RESUMEN

During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit. We show that oral treatment with a specific inhibitor of the kinase PERK (protein kinase RNA-like endoplasmic reticulum kinase), a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain. This was the case for animals treated both at the preclinical stage and also later in disease when behavioral signs had emerged. Critically, the compound acts downstream and independently of the primary pathogenic process of prion replication and is effective despite continuing accumulation of misfolded PrP. These data suggest that PERK, and other members of this pathway, may be new therapeutic targets for developing drugs against prion disease or other neurodegenerative diseases where the UPR has been implicated.


Asunto(s)
Adenina/análogos & derivados , Indoles/administración & dosificación , Indoles/farmacología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/prevención & control , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/prevención & control , Respuesta de Proteína Desplegada/efectos de los fármacos , Adenina/administración & dosificación , Adenina/sangre , Adenina/farmacología , Adenina/uso terapéutico , Administración Oral , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Factor 2 Eucariótico de Iniciación/metabolismo , Indoles/sangre , Indoles/uso terapéutico , Ratones , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Enfermedades por Prión/enzimología , Enfermedades por Prión/patología , Priones , Biosíntesis de Proteínas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo
11.
Nature ; 485(7399): 507-11, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22622579

RESUMEN

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Asunto(s)
Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fosfoproteínas/metabolismo , Priones/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Cinamatos/farmacología , Factor 2 Eucariótico de Iniciación/análisis , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores , Fosfoproteínas/análisis , Fosforilación , Proteínas PrPSc/análisis , Proteínas PrPSc/metabolismo , Proteínas PrPSc/toxicidad , Enfermedades por Prión/patología , Priones/biosíntesis , Priones/genética , Biosíntesis de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Represoras/análisis , Proteínas Represoras/química , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Transmisión Sináptica/efectos de los fármacos , Tiourea/análogos & derivados , Tiourea/farmacología , Respuesta de Proteína Desplegada/fisiología
12.
Biochem J ; 433(1): 19-29, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21158739

RESUMEN

One of the major current challenges to both medicine and neuroscience is the treatment of neurodegenerative diseases, which pose an ever-increasing medical, social and economic burden in the developed world. These disorders, which include Alzheimer's, Huntington's and Parkinson's diseases, and the rarer prion diseases, are separate entities clinically but have common features, including aggregates of misfolded proteins and varying patterns of neurodegeneration. A key barrier to effective treatment is that patients present clinically with advanced, irreversible, neuronal loss. Critically, mechanisms of neurotoxicity are poorly understood. Prevention of neuronal loss, ideally by targeting underlying pathogenic mechanisms, must be the aim of therapy. The present review describes the rationale and experimental approaches that have allowed such prevention, rescuing neurons in mice with prion disease. This rescue cured animals of a rapidly fatal neurodegenerative condition, resulting in symptom-free survival for their natural lifespan. Early pathological changes were reversed; behavioural, cognitive and neurophysiological deficits were recovered; and there was no neuronal loss. This was achieved by targeting the central pathogenic process in prion disease rather than the presumed toxic species, first by proof-of-principle experiments in transgenic mice and then by treatment using RNA interference for gene knockdown. The results have been a new therapeutic target for prion disease, further insight into mechanisms of prion neurotoxicity and the discovery of a window of reversibility in neuronal damage. Furthermore, the work gives rise to new concepts for treatment strategies for other neurodegenerative disorders, and highlights the need for clinical detection of early neuronal dysfunction, so that similar early rescue can also be achieved for these disorders.


Asunto(s)
Neuronas/patología , Enfermedades por Prión/terapia , Interferencia de ARN , Animales , Supervivencia sin Enfermedad , Ratones , Fármacos Neuroprotectores , Enfermedades por Prión/prevención & control , Inducción de Remisión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...