Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Oncol ; 13: 1225646, 2023.
Article En | MEDLINE | ID: mdl-37927472

Introduction: Next-generation sequencing (NGS) is currently widely used for biomarker studies and molecular profiling to identify concurrent alterations that can lead to the better characterization of a tumor's molecular landscape. However, further evaluation of technical aspects related to the detection of gene rearrangements and copy number alterations is warranted. Methods: There were 12 ALK rearrangement-positive tumor specimens from patients with non-small cell lung cancer (NSCLC) previously detected via fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and an RNA-based NGS assay, and 26 MET high gene copy number (GCN) cases detected by FISH, selected for this retrospective study. All 38 pre-characterized cases were reassessed utilizing the PGDx™ elio™ tissue complete assay, a 505 gene targeted NGS panel, to evaluate concordance with these conventional diagnostic techniques. Results: The detection of ALK rearrangements using the DNA-based NGS assay demonstrated excellent sensitivity with the added benefit of characterizing gene fusion partners and genomic breakpoints. MET copy number alterations were also detected; however, some discordances were observed likely attributed to differences in algorithm, reporting thresholds and gene copy number state. TMB was also assessed by the assay and correlated to the presence of NSCLC driver alterations and was found to be significantly lower in cases with NGS-confirmed canonical driver mutations compared with those without (p=0.0019). Discussion: Overall, this study validates NGS as an accurate approach for detecting structural variants while also highlighting the need for further optimization to enable harmonization across methodologies for amplifications.

2.
J Mol Diagn ; 25(7): 477-489, 2023 07.
Article En | MEDLINE | ID: mdl-37068734

Genomic profiling is critical for precision oncology to guide treatment decisions. Liquid biopsy testing is a complementary approach to tissue testing, particularly when tissue is not readily available. The Labcorp Plasma Focus test is a circulating cell-free DNA genomic profiling test that identifies actionable variants in solid cancers, including non-small-cell lung, colorectal, melanoma, breast, esophageal, gastroesophageal junction, and gastric cancers. This study highlights the analytical validation of the test, including accuracy compared with orthogonal methods, as well as sensitivity, specificity, precision, reproducibility, and repeatability. Concordance with orthogonal methods showed percent positive agreement of 98.7%, 89.3%, and 96.2% for single nucleotide variants (SNVs), insertion/deletions (indels), and copy number amplifications (CNAs), respectively, and 100.0% for translocations and microsatellite instability (MSI). Analytical sensitivity revealed a median limit of detection of 0.7% and 0.6% for SNVs and indels, 1.4-fold for CNAs, 0.5% variant allele frequency for translocations, and 0.6% for MSI. Specificity was >99% for SNVs/indels and 100% for CNAs, translocations, and MSI. Average positive agreement from precision, reproducibility, and repeatability experiments was 97.5% and 88.9% for SNVs/indels and CNAs, and 100% for translocations and MSI. Taken together, these data show that the Labcorp Plasma Focus test is a highly accurate, sensitive, and specific approach for cell-free DNA genomic profiling to supplement tissue testing and inform treatment decisions.


Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Reproducibility of Results , Precision Medicine , Microsatellite Instability , Genomics/methods , High-Throughput Nucleotide Sequencing/methods
3.
Oncologist ; 26(11): e1971-e1981, 2021 11.
Article En | MEDLINE | ID: mdl-34286887

BACKGROUND: Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS: In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS: The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION: Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE: This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.


Circulating Tumor DNA , Neoplasms , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Microsatellite Instability , Neoplasms/genetics , Retrospective Studies
4.
Clin Cancer Res ; 25(23): 7024-7034, 2019 12 01.
Article En | MEDLINE | ID: mdl-31506389

PURPOSE: Microsatellite instability (MSI) and high tumor mutation burden (TMB-High) are promising pan-tumor biomarkers used to select patients for treatment with immune checkpoint blockade; however, real-time sequencing of unresectable or metastatic solid tumors is often challenging. We report a noninvasive approach for detection of MSI and TMB-High in the circulation of patients. EXPERIMENTAL DESIGN: We developed an approach that utilized a hybrid-capture-based 98-kb pan-cancer gene panel, including targeted microsatellite regions. A multifactorial error correction method and a novel peak-finding algorithm were established to identify rare MSI frameshift alleles in cell-free DNA (cfDNA). RESULTS: Through analysis of cfDNA derived from a combination of healthy donors and patients with metastatic cancer, the error correction and peak-finding approaches produced a specificity of >99% (n = 163) and sensitivities of 78% (n = 23) and 67% (n = 15), respectively, for MSI and TMB-High. For patients treated with PD-1 blockade, we demonstrated that MSI and TMB-High in pretreatment plasma predicted progression-free survival (hazard ratios: 0.21 and 0.23, P = 0.001 and 0.003, respectively). In addition, we analyzed cfDNA from longitudinally collected plasma samples obtained during therapy to identify patients who achieved durable response to PD-1 blockade. CONCLUSIONS: These analyses demonstrate the feasibility of noninvasive pan-cancer screening and monitoring of patients who exhibit MSI or TMB-High and have a high likelihood of responding to immune checkpoint blockade.See related commentary by Wang and Ajani, p. 6887.


Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , Microsatellite Instability , Mutation , Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Biomarkers, Tumor/blood , Case-Control Studies , Circulating Tumor DNA/genetics , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/pathology , Prognosis , Survival Rate
...