Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833284

RESUMEN

P4B (2-phenyl-1-[4-(6-(piperidin-1-yl) pyridazin-3-yl) piperazin-1-yl] butan-1-one) is a novel cellulose biosynthesis inhibitor (CBI) discovered in a screen for molecules to identify inhibitors of Arabidopsis (Arabidopsis thaliana) seedling growth. Growth and cellulose synthesis inhibition by P4B were greatly reduced in a novel mutant for the cellulose synthase catalytic subunit gene CESA3 (cesa3pbr1). Cross-tolerance to P4B was also observed for isoxaben-resistant (ixr) cesa3 mutants ixr1-1 and ixr1-2. P4B has an original mode of action as compared with most other CBIs. Indeed, short-term treatments with P4B did not affect the velocity of cellulose synthase complexes (CSCs) but led to a decrease in CSC density in the plasma membrane without affecting their accumulation in microtubule-associated compartments. This was observed in the wild type but not in a cesa3pbr1 background. This reduced density correlated with a reduced delivery rate of CSCs to the plasma membrane but also with changes in cortical microtubule dynamics and orientation. At longer timescales, however, the responses to P4B treatments resembled those to other CBIs, including the inhibition of CSC motility, reduced growth anisotropy, interference with the assembly of an extensible wall, pectin demethylesterification, and ectopic lignin and callose accumulation. Together, the data suggest that P4B either directly targets CESA3 or affects another cellular function related to CSC plasma membrane delivery and/or microtubule dynamics that is bypassed specifically by mutations in CESA3.

2.
Proc Natl Acad Sci U S A ; 116(39): 19743-19752, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501325

RESUMEN

Despite an ever-increasing interest for the use of pectin-derived oligogalacturonides (OGs) as biological control agents in agriculture, very little information exists-mainly for technical reasons-on the nature and activity of the OGs that accumulate during pathogen infection. Here we developed a sensitive OG profiling method, which revealed unsuspected features of the OGs generated during infection of Arabidopsis thaliana with the fungus Botrytis cinerea Indeed, in contrast to previous reports, most OGs were acetyl- and methylesterified, and 80% of them were produced by fungal pectin lyases, not by polygalacturonases. Polygalacturonase products did not accumulate as larger size OGs but were converted into oxidized GalA dimers. Finally, the comparison of the OGs and transcriptomes of leaves infected with B. cinerea mutants with reduced pectinolytic activity but with decreased or increased virulence, respectively, identified candidate OG elicitors. In conclusion, OG analysis provides insights into the enzymatic arms race between plant and pathogen and facilitates the identification of defense elicitors.


Asunto(s)
Arabidopsis/metabolismo , Botrytis/patogenicidad , Ácidos Hexurónicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Pectinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Poligalacturonasa/metabolismo , Transducción de Señal
3.
Curr Biol ; 28(15): 2452-2458.e4, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057301

RESUMEN

The growth of plants, like that of other walled organisms, depends on the ability of the cell wall to yield without losing its integrity. In this context, plant cells can sense the perturbation of their walls and trigger adaptive modifications in cell wall polymer interactions. Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1) was previously shown in Arabidopsis to trigger growth inhibition and defense responses upon perturbation of the cell wall, but so far, neither the ligand nor the role of the receptor in normal development was known. Here, we report that THE1 is a receptor for the peptide rapid alkalinization factor (RALF) 34 and that this signaling module has a role in the fine-tuning of lateral root initiation. We also show that RALF34-THE1 signaling depends, at least for some responses, on FERONIA (FER), another RALF receptor involved in a variety of processes, including immune signaling, mechanosensing, and reproduction [1]. Together, the results show that RALF34 and THE1 are part of a signaling network that integrates information on the integrity of the cell wall with the coordination of normal morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hormonas Peptídicas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Hormonas Peptídicas/metabolismo , Raíces de Plantas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
4.
PLoS Genet ; 13(6): e1006832, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28604776

RESUMEN

Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.


Asunto(s)
Proteínas de Arabidopsis/genética , Pared Celular/genética , Raíces de Plantas/genética , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Estrés Fisiológico/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Pared Celular/efectos de los fármacos , Celulosa/biosíntesis , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lignina/biosíntesis , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Proteínas Quinasas/biosíntesis , Cloruro de Sodio/toxicidad , Estrés Fisiológico/efectos de los fármacos
5.
Plant Cell ; 28(9): 2276-2290, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27543091

RESUMEN

Because the plant cell wall provides the first line of defense against biotic and abiotic assaults, its functional integrity needs to be maintained under stress conditions. Through a phenotype-based compound screening approach, we identified a novel cellulose synthase inhibitor, designated C17. C17 administration depletes cellulose synthase complexes from the plasma membrane in Arabidopsis thaliana, resulting in anisotropic cell elongation and a weak cell wall. Surprisingly, in addition to mutations in CELLULOSE SYNTHASE1 (CESA1) and CESA3, a forward genetic screen identified two independent defective genes encoding pentatricopeptide repeat (PPR)-like proteins (CELL WALL MAINTAINER1 [CWM1] and CWM2) as conferring tolerance to C17. Functional analysis revealed that mutations in these PPR proteins resulted in defective cytochrome c maturation and activation of mitochondrial retrograde signaling, as evidenced by the induction of an alternative oxidase. These mitochondrial perturbations increased tolerance to cell wall damage induced by cellulose deficiency. Likewise, administration of antimycin A, an inhibitor of mitochondrial complex III, resulted in tolerance toward C17. The C17 tolerance of cwm2 was partially lost upon depletion of the mitochondrial retrograde regulator ANAC017, demonstrating that ANAC017 links mitochondrial dysfunction with the cell wall. In view of mitochondria being a major target of a variety of stresses, our data indicate that plant cells might modulate mitochondrial activity to maintain a functional cell wall when subjected to stresses.

6.
Plant J ; 87(2): 230-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121260

RESUMEN

The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.


Asunto(s)
Células/ultraestructura , Imagenología Tridimensional/métodos , Arabidopsis/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Programas Informáticos , Análisis Espacial , Fracciones Subcelulares/ultraestructura
8.
Nat Plants ; 1: 15094, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27250258

RESUMEN

In plants, vacuolar H(+)-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.

9.
Plant Cell Physiol ; 56(2): 287-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25516570

RESUMEN

The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Espacio Intracelular/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/antagonistas & inhibidores , Arsenicales/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromonas/farmacología , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Soluciones Hipotónicas/farmacología , Espacio Intracelular/efectos de los fármacos , Modelos Biológicos , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transporte de Proteínas/efectos de los fármacos , Tiazinas/farmacología , Factores de Tiempo
10.
Plant Physiol ; 167(2): 381-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25535279

RESUMEN

Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Celulasa/metabolismo , Celulosa/metabolismo , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Anisotropía , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Benzamidas/farmacología , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dinitrobencenos/farmacología , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Sulfanilamidas/farmacología
11.
PLoS One ; 9(11): e112387, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25383767

RESUMEN

Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane-cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Celulasa/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Pared Celular/metabolismo , Celulasa/química , Proteínas de la Membrana/química , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Plant Physiol ; 166(4): 1709-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25352273

RESUMEN

Cellulose synthesis is driven by large plasma membrane-inserted protein complexes, which in plants have 6-fold symmetry. In Arabidopsis (Arabidopsis thaliana), functional cellulose synthesis complexes (CSCs) are composed of at least three different cellulose synthase catalytic subunits (CESAs), but the actual ratio of the CESA isoforms within the CSCs remains unresolved. In this work, the stoichiometry of the CESAs in the primary cell wall CSC was determined, after elimination of CESA redundancy in a mutant background, by coimmunoprecipitation and mass spectrometry using label-free quantitative methods. Based on spectral counting, we show that CESA1, CESA3, and CESA6 are present in a 1:1:1 molecular ratio.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Glucosiltransferasas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dominio Catalítico , Pared Celular/metabolismo , Glucosiltransferasas/genética , Inmunoprecipitación , Isoenzimas , Espectrometría de Masas , Proteínas de la Membrana , Proteómica , Plantones/enzimología , Plantones/genética
13.
Biochim Biophys Acta ; 1842(10): 1422-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25004376

RESUMEN

Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains. We reveal here that inhibition of the synthesis of sphingolipids with very long acyl chains induces defective cell plates with persistent vesicular structures and large gaps. Golgi-derived vesicles carrying material toward the cell plate display longer vesicle-vesicle contact time and their cargos accumulate at the cell plate, suggesting membrane fusion and/or recycling defects. In vitro fusion experiments between artificial vesicles show that glycosphingolipids with very long acyl chains stimulate lipid bilayer fusion. Therefore we propose that the very long acyl chains of sphingolipids are essential structural determinants for vesicle dynamics and membrane fusion during cytokinesis.

14.
Plant Cell ; 26(6): 2601-2616, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24963054

RESUMEN

In higher plants, cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein-GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants.

15.
Plant Physiol ; 165(4): 1521-1532, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24948829

RESUMEN

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-ß-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-ß-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.

16.
Plant J ; 77(1): 71-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24147885

RESUMEN

During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo-vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP-labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co-localisation studies using GFP-CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast-associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP-CESA from doughnut-shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP-CESA density diminished, whereas GFP-CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP-CESA in clathrin-containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose-deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Pared Celular/ultraestructura , Clatrina/metabolismo , Citocinesis , Genes Reporteros , Glucosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Isoenzimas , Microscopía Confocal , Microtúbulos/ultraestructura , Modelos Biológicos , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/genética , Plantones/metabolismo
17.
Plant Physiol ; 160(2): 726-37, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22926318

RESUMEN

In higher plants, cellulose is synthesized by so-called rosette protein complexes with cellulose synthases (CESAs) as catalytic subunits of the complex. The CESAs are divided into two distinct families, three of which are thought to be specialized for the primary cell wall and three for the secondary cell wall. In this article, the potential of primary and secondary CESAs forming a functional rosette complex has been investigated. The membrane-based yeast two-hybrid and biomolecular fluorescence systems were used to assess the interactions between three primary (CESA1, CESA3, CESA6), and three secondary (CESA4, CESA7, CESA8) Arabidopsis (Arabidopsis thaliana) CESAs. The results showed that all primary CESAs can physically interact both in vitro and in planta with all secondary CESAs. Although CESAs are broadly capable of interacting in pairwise combinations, they are not all able to form functional complexes in planta. Analysis of transgenic lines showed that CESA7 can partially rescue defects in the primary cell wall biosynthesis in a weak cesa3 mutant. Green fluorescent protein-CESA protein fusions revealed that when CESA3 was replaced by CESA7 in the primary rosette, the velocity of the mixed complexes was slightly faster than the native primary complexes. CESA1 in turn can partly rescue defects in secondary cell wall biosynthesis in a cesa8ko mutant, resulting in an increase of cellulose content relative to cesa8ko. These results demonstrate that sufficient parallels exist between the primary and secondary complexes for cross-functionality and open the possibility that mixed complexes of primary and secondary CESAs may occur at particular times.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Pared Celular/enzimología , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/genética , Proteínas Fluorescentes Verdes/metabolismo , Complejos Multiproteicos/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Haz Vascular de Plantas/enzimología , Haz Vascular de Plantas/metabolismo , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos
18.
Front Plant Sci ; 3: 145, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22783266

RESUMEN

Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

19.
Curr Biol ; 21(21): 1822-7, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22036185

RESUMEN

Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , ADN Complementario/genética , Genes de Plantas , Glucosiltransferasas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Luz , Microfibrillas/metabolismo , Microtúbulos/metabolismo , Fitocromo B/metabolismo
20.
Plant Cell ; 23(7): 2592-605, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742992

RESUMEN

It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Celulosa/ultraestructura , Hipocótilo/citología , Hipocótilo/crecimiento & desarrollo , Epidermis de la Planta/citología , Epidermis de la Planta/crecimiento & desarrollo , Anisotropía , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Hipocótilo/metabolismo , Microfibrillas/química , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Epidermis de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA