Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 10(7)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262087

RESUMEN

The micromanipulation of micro objects is nowadays the focus of several investigations, specially in biomedical applications. Therefore, some manipulation tasks are required to be in aqueous environment and become more challenging because they depend upon observation and actuation methods that are compatible with MEMS Technology based micromanipulators. This paper describes how three grasping-releasing based tasks have been successfully applied to agarose micro beads whose average size is about 60 µ m: (i) the extraction of a single micro bead from a water drop; (ii) the insertion of a single micro bead into the drop; (iii) the grasping of a single micro bead inside the drop. The success of the performed tasks rely on the use of a microgripper previously designed, fabricated, and tested.

2.
Micromachines (Basel) ; 10(6)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195703

RESUMEN

This paper deals with the manipulation of micro-objects operated by a new concept multi-hinge multi-DoF (degree of freedom) microsystem. The system is composed of a planar 3-DoF microstage and of a set of one-DoF microgrippers, and it is arranged is such a way as to allow any microgripper to crawl over the stage. As a result, the optimal configuration to grasp the micro-object can be reached. Classical algorithms of kinematic analysis have been used to study the rigid-body model of the mobile platform. Then, the rigid-body replacement method has been implemented to design the corresponding compliant mechanism, whose geometry can be transferred onto the etch mask. Deep-reactive ion etching (DRIE) is suggested to fabricate the whole system. The main contributions of this investigation consist of (i) the achievement of a relative motion between the supporting platform and the microgrippers, and of (ii) the design of a process flow for the simultaneous fabrication of the stage and the microgrippers, starting from a single silicon-on-insulator (SOI) wafer. Functionality is validated via theoretical simulation and finite element analysis, whereas fabrication feasibility is granted by preliminary tests performed on some parts of the microsystem.

3.
Micromachines (Basel) ; 9(1)2017 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30393290

RESUMEN

As many studies show, there is a relation between the tissue's mechanical characteristics and some specific diseases. Knowing this relationship would help early diagnosis or microsurgery. In this paper, a new method for measuring the viscoelastic properties of soft materials at the microscale is proposed. This approach is based on the adoption of a microsystem whose mechanical structure can be reduced to a compliant four bar linkage where the connecting rod is substituted by the tissue sample. A procedure to identify both stiffness and damping coefficients of the tissue is then applied to the developed hardware. Particularly, stiffness is calculated solving the static equations of the mechanism in a desired configuration, while the damping coefficient is inferred from the dynamic equations, which are written under the hypothesis that the sample tissue is excited by a variable compression force characterized by a suitable wave form. The whole procedure is implemented by making use of a control system.

4.
Bioinspir Biomim ; 8(3): 036003, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793023

RESUMEN

In this paper, we study energy harvesting from the beating of a biomimetic fish tail using ionic polymer-metal composites. The design of the biomimetic tail is based on carangiform swimmers and is specifically inspired by the morphology of the heterocercal tail of thresher sharks. The tail is constituted of a soft silicone matrix molded in the form of the heterocercal tail and reinforced by a steel beam of rectangular cross section. We propose a modeling framework for the underwater vibration of the biomimetic tail, wherein the tail is assimilated to a cantilever beam with rectangular cross section and heterogeneous physical properties. We focus on base excitation in the form of a superimposed rotation about a fixed axis and we consider the regime of moderately large-amplitude vibrations. In this context, the effect of the encompassing fluid is described through a hydrodynamic function, which accounts for inertial, viscous and convective phenomena. The model is validated through experiments in which the base excitation is systematically varied and the motion of selected points on the biomimetic tail tracked in time. The feasibility of harvesting energy from an ionic polymer-metal composite attached to the vibrating structure is experimentally and theoretically assessed. The response of the transducer is described using a black-box model, where the voltage output is controlled by the rate of change of the mean curvature. Experiments are performed to elucidate the impact of the shunting resistance, the frequency of the base excitation and the placement of the ionic polymer-metal composite on energy harvesting from the considered biomimetic tail.


Asunto(s)
Biomimética/instrumentación , Suministros de Energía Eléctrica , Transferencia de Energía/fisiología , Peces/fisiología , Siliconas/química , Natación/fisiología , Cola (estructura animal)/fisiología , Animales , Simulación por Computador , Diseño Asistido por Computadora , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Peces/anatomía & histología , Iones , Sistemas Microelectromecánicos/instrumentación , Modelos Biológicos , Acero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA